当前位置: X-MOL 学术Geochem. Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A golden period for environmental soil chemistry.
Geochemical Transactions ( IF 2.3 ) Pub Date : 2020-04-01 , DOI: 10.1186/s12932-020-00068-6
Donald L Sparks 1
Affiliation  

In many respects, the field of environmental soil chemistry has never been more important than today. Many of the critical environmental issues we face globally are linked to the changing climate, which is having profound impacts on the chemistry of soils. We have a poor understanding of how climate impacts not only chemical, but also physical, biological, and mineralogical properties and processes of soils. Figure 1 shows some of the major impacts of climate change on soils and water. Soils, globally, are under immense stress due to erosion, nutrient imbalances, salinization, desertification, pollution and acidification [1]. Our very best soils are being lost to development. In short, the fate of our soils and human security are inextricably linked [2]. The population of the world stands at 7.5 billion. It is expected to rise to 9–9.5 billion by 2050 and perhaps to 11 billion by 2100. Megacities are sprouting up in many areas, particularly in Asia. These are cities of more than 10 million people. Much of the population growth is occurring in urban areas, in particular coastal regions. For example, more than 50% of the U.S. population lives in coastal areas. The latter areas are very susceptible to increased flooding and sea level rise.

Fig. 1
figure1

Climate change impacts on soils

Full size image

With the impacts of climate and environmental change, there is incredible pressure to ensure an adequate food supply, especially for the most vulnerable regions, e.g., those in Africa. The production of enough food is dependent on adequate water, productive land, and in general healthy soils. A recent report from the Intergovernmental Panel on Climate Change [3] found that a half billion people live in locations that are seeing increased desertification and soils are being lost between 10 and 100 times faster than they are forming. Climate change will exacerbate these threats even more due to flooding, droughts, storms and other extreme weather events, further affecting the food supply. The report also notes that presently more than 10 percent of the world’s population is undernourished which could enhance cross-border migration and a quarter of humanity faces significant water crises.

Water quantity is particularly problematic with the increasing high temperatures and drought that we are seeing in areas such as the Western U.S., Africa, and many other parts of the world. Of the total water on Planet Earth, 96.5% is in oceans, bays, and glaciers. Groundwater, which is a major source of drinking water, comprises only 1.69% of the total water, and of this, only 0.76% is fresh water [4]. In a recent article in the New York Times [5], it was noted that 17 countries are under severe water stress. In addition to issues related to water scarcity, there are major challenges globally with water quality, related to excess nutrients such as nitrogen (N) and phosphorus (P) derived from organic wastes and inorganic fertilizers. In areas of high animal production, excess N and P in soils enter water bodies, causing hypoxia, resulting in algal blooms, fish kills and further impacts on tourism and even human health. Emerging organic contaminants such as antibiotics, hormones, per- and polyfluoroalkyl substances (PFAS), and others and their impact on drinking water, are also of great concern, particularly as populations increase. All of these contaminants impact human health and our economic vitality.

Carbon dioxide levels have been increasing at an alarming rate, particularly over the last few decades. Prior to the industrial revolution, CO2 levels were about 280 ppm. By 2019 they had risen above 410 ppm, levels that last occurred 3 million years ago. Human activities are estimated to have caused an approximately 1.0 ℃ rise in global warming above pre-industrial levels, with a probable range of 0.8–1.2 ℃, and are likely to reach 1.5 ℃ between 2030 and 2052 if global warming continues at the present rate [6] (Fig. 2). The last several years have been the warmest on record. Many scientists have called this geological period in history the Anthropocene as conclusive scientific evidence shows that humans are having a major impact on Planet Earth. As Aldo Leopold so insightfully noted in 1933, “The reaction of land to occupancy determines the nature and duration of human civilization”.

Fig. 2
figure2

Global temperature change with time

Full size image

The increases in greenhouse emissions and rising temperatures have resulted in melting glaciers, less snow cover, diminishing sea ice, rising sea levels, ocean acidification, and increasing atmospheric water vapor. Extreme events such as intense rainfall, heat waves, and forest fires, and droughts are becoming more frequent [7]. In terms of sea level rise, the global sea level has risen 0.18–0.20 m since 1900, with about half (0.08 m) of the rise occurring since 1993. The increasing sea level has resulted in more frequent flooding in coastal areas. Global average sea levels will continue to rise with model projections of a rise of 0.26–0.77 m by 2100 if global warming of 1.5 ℃ occurs [6]. The most vulnerable areas in the continental U.S. are along the Atlantic and Gulf Coasts. Subsidence, or land that is sinking, is compounding the problem, e.g., along the Mid-Atlantic Coast of the U.S. With increases in sea levels and flooding, there is increasing salinization of land and groundwater. Additionally, there are 2500 sites along the Atlantic and Gulf Coasts that are contaminated with metals, metalloids, and organic chemicals in areas that are heavily populated [8] (Fig. 3). It is not known how flooding and sea level rise, with its attendant salinity, will impact cycling of the contaminants and human health.

Fig. 3
figure3

Contaminated sites in the U.S. which are subject to flooding

Full size image

There is great concern about the impacts of rising temperatures on melting of permafrost soils. Permafrost soils sequester 1035 petagrams (Pg) of carbon (C) [9] in the top 3 m of soil, which represents about 70% of the current estimate for global soil C storage in the top 3 m (1500 Pg C) [10]. Research has already shown high labile C fractions released from permafrost soils that are thawing [11,12,13]. Plaza et al. [14], by quantifying C related to fixed ash content, measured soil C pool changes over a period of 5 years in warmed and ambient tundra ecosystems in Alaska. They found a 5.4% loss of C/year. They attributed much of the loss to lateral hydrological export. In a recent paper, Hemingway et al. [15] found that tightly mineral bound OC persists for millennia. It is critical to understand the role of warming in release of C, particularly C that is complexed with soil minerals such as iron oxides, which are major components for sequestering soil carbon [16,17,18,19,20].

In view of the above environmental challenges, it seems clear that the major research frontiers in environmental soil chemistry over the next 5–10 years will be heavily focused on the impacts of climate change on various soil chemical and mineralogical reactions and processes. Progress in these and other areas will result in large part due to rapid advances in analytical tools, data science, and modeling capabilities. As Nobel Laureate Sydney Brenner once said, “Progress (in science) depends on the interplay of techniques, discoveries, and ideas, probably in that order of importance [21].

Some of the major research thrusts and needs include:

  • Effects of sea level rise, salt water intrusion, and flooding on cycling of inorganic and organic contaminants such as metal (loid)s and nutrients

  • Fate and transport of antibiotics, hormones, PFAS and other emerging contaminants

  • Effects of warming of permafrost soils on carbon complexation with and release from soil minerals and emission of greenhouse gases

  • Modeling that integrates spatial and temporal scales

  • Advances in field-based spectroscopic techniques

  • Development and deployment of real-time sensors

  • Real-time investigations of soil chemical reactivity at the molecular scale

  • Coupled physical, chemical, and biological process studies

  • Mechanisms of mineral/microbe interactions

  • Advances in understanding light element chemistry, e.g., Al, B, Ca, and S in soils using new tender and soft X-ray techniques

While there are so many exciting opportunities in the next decade in environmental soil chemistry research, there are still outstanding challenges now and in the future. One of the hallmarks of some of the most pioneering research in the field has been fundamental basic research. Soil chemists in the past were able to focus on a few areas for multiple periods such that they could “dig deeply” into the topic and become leading experts. This was made possible due to a continuity in funding for multiple periods. Over the past decade or more, institutional funding has decreased along with funding from federal agencies and the private sector. Additionally, the focus areas of research that funders support also change frequently which causes scientists to shift on a frequent basis from one topic to another. Thus, it is difficult to work in a particular area for an extended period of time and be viewed as an expert. Such shifting in focus could deleteriously impact the long-term reputation of a scientist. My thoughts on the critical need for basic, fundamental research and taking a deep dive into a particular area are best summed up by Albert Einstein, who stated, “I have little patience with scientists who take a board of wood, look for its thinnest part, and drill a great number of holes where drilling is easy”. There has also been a tendency for funding agencies to create large team science programs where multiple investigators, often from different institutions, pursue research on an interdisciplinary project. There is no question that many of the big challenges and opportunities in environmental soil chemistry research require an interdisciplinary approach. While soil chemists must focus on a few areas in depth at the fundamental level, they should take advantage of the exciting research opportunities that cross academic disciplines. However, the downside for individual scientists who pursue primarily large interdisciplinary science projects, especially early career scientists, is that their individual research products, i.e., refereed papers, often are not given the degree of credit that would result from publications that included only them and their students/postdocs. The overall significant research impacts from large team science recently was questioned. In a recent paper by Wu et al. [22], more than 64 million papers, patents and software products over a period of 1954–2014 were examined. The results showed that small teams of scientists tended to produce impactful results and ideas while large teams developed existing ideas.

The environmental challenges we face are daunting. However, with challenges there are opportunities. The advances in analytical tools and cyberinfrastructure offer exciting opportunities for soil chemists to tackle and help solve some of the most pressing issues facing humankind. In short, the future of environmental soil chemistry is indeed bright.

  1. 1.

    FAO and ITPS (2015) Status of the World’s soil resources (SWSR)–main report. Food and agriculture organization of the United Nations and intergovernmental technical panel on soils, Rome, Italy

  2. 2.

    Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:6235

    • Article
    • Google Scholar
  3. 3.

    IPCC (2019) Climate Change and land. An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security and greenhouse gas fluxes in terrestrial ecosystems

  4. 4.

    Gleick PH (1996) Water Resources. In: Schneider SH (ed) Encyclopedia of climate and weather. Oxford Univ Press, New York, pp 817–823

    • Google Scholar
  5. 5.

    Sengupta S, Cai W (2019) A Quarter of humanity faces looming water crises. The New York Times https://www.nytimes.com/interactive/2019/08/06/climate/world-water-stress.html

  6. 6.

    IPCC (2018) Global Warming of 1.5C. An IPCC special report on the impacts of global warming of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

  7. 7.

    Global Change Research Program (2018) Impacts, risks, and adaptation in the US. Fourth National Climate Assessment, Washington, DC

    • Google Scholar
  8. 8.

    USGCRP (2017) Climate science special report: fourth national climate assessment, vol 1. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK editors. US Global Change Research Program. Washington, DC https://doi.org/10.7930/j0j964j6

  9. 9.

    Schuur EA, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714

    • Article
    • Google Scholar
  10. 10.

    Scharlemann JP, Tanner EV, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carb Mngt. 5:81–91

    • Google Scholar
  11. 11.

    Drake TW, Wickland KP, Spencer RG, McKnight DM, Striegl RG (2015) Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Pro Nat Acad Sci. 112:13946–13951

    • Article
    • Google Scholar
  12. 12.

    Waldrop MP, Wickland KP, White Iii R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob chang bio. 16:2543–2554

    • Google Scholar
  13. 13.

    Burkert A, Douglas TA, Waldrop MP, Mackelprang R (2019) Changes in the active, dead, and dormant microbial community structure across a pleistocene permafrost chronosequence. Appl Environ Microbiol. 85:7

    • Article
    • Google Scholar
  14. 14.

    Plaza C, Pegoraro E, Bracho R, Celis G, Crummer KG, Hutchings JA, Hicks Pries CE, Mauritz M, Natali SM, Salmon VG, Schadel C, Webb EE, Schuur EAG (2019) Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat Geosci 12:627–631

    • Article
    • Google Scholar
  15. 15.

    Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, Galy VV (2019) Mineral protection regulates long-term global preservation of natural organic carbon. Nature. 570:228–231

    • Article
    • Google Scholar
  16. 16.

    Chen C, Dynes JJ, Wang J, Sparks DL (2014) Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ Sci Tech. 48:13751–13759

    • Article
    • Google Scholar
  17. 17.

    Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Tech. 28:38–46

    • Article
    • Google Scholar
  18. 18.

    Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1995) Adsorption and desorption of different organic matter fractions on iron oxide. Geoch Cosm Act. 59:219–229

    • Article
    • Google Scholar
  19. 19.

    Lalonde K, Mucci A, Ouellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nat. 483:198–200

    • Article
    • Google Scholar
  20. 20.

    Lehmann J, Kinyangi J, Solomon D (2007) Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochem. 85:45–57

    • Article
    • Google Scholar
  21. 21.

    Kenyon C (2019) Sydney Brenner (1927–2019). Pioneer of molecular biology and genetics. Science 364:638

    • Article
    • Google Scholar
  22. 22.

    Wu L, Wang D, Evans JA (2019) Large teams develop and small teams disrupt science and technology. Nature. 566:378–382

    • Article
    • Google Scholar

Download references

I am deeply indebted to Young-Shin Jun, Washington University in St. Louis, Mengqiang Zhu, University of Wyoming, and Derek Peak, University of Saskatchewan, who served as editors of this Special Issue, and who invited me to contribute a feature article, and to all of the authors for their outstanding contributions.

Affiliations

  1. Delaware Environmental Institute, University of Delaware, Newark, DE, 19716, USA
    • Donald L. Sparks
Authors
  1. Donald L. SparksView author publicationsYou can also search for this author in
    • PubMed
    • Google Scholar

Contributions

DLS drafted the manuscript. The author read and approved the final manuscript.

Corresponding author

Correspondence to Donald L. Sparks.

Competing interests

The author declares they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Sparks, D.L. A golden period for environmental soil chemistry. Geochem Trans 21, 5 (2020). https://doi.org/10.1186/s12932-020-00068-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s12932-020-00068-6



中文翻译:

环境土壤化学的黄金时期。

在许多方面,环境土壤化学领域从未像现在这样重要。我们在全球范围内面临的许多关键环境问题都与气候变化有关,气候变化对土壤化学产生了深远影响。我们对气候如何不仅影响化学,而且还影响物理,生物和矿物学的特性以及土壤过程的了解甚少。图1显示了气候变化对土壤和水的一些主要影响。由于侵蚀,养分失衡,盐碱化,沙漠化,污染和酸化,全球土壤承受着巨大的压力[1]。我们最好的土壤正在流失。简而言之,我们的土壤命运与人类安全密不可分[2]。世界人口为75亿。预计将上升到9–9。到2050年将达到50亿,到2100年可能达到110亿。大城市在许多地区如雨后春笋般涌现。这些城市人口超过一千万。人口增长的大部分发生在城市地区,特别是沿海地区。例如,超过50%的美国人口居住在沿海地区。后者地区非常容易遭受洪水和海平面上升的影响。

图。1
图1

气候变化对土壤的影响

全尺寸图片

在气候和环境变化的影响下,要确保充足的粮食供应面临巨大的压力,尤其是对于非洲等最脆弱地区而言。足够的粮食生产取决于充足的水,生产性土地以及一般健康的土壤。政府间气候变化专门委员会最近的一份报告[3]发现,有五亿人口居住在沙漠化加剧的地区,土壤流失的速度比形成速度快10到100倍。由于洪水,干旱,暴风雨和其他极端天气事件,气候变化将加剧这些威胁,进一步影响粮食供应。

在美国西部,非洲和世界许多其他地区,随着高温和干旱的增加,水的数量尤其成问题。在地球上的总水量中,有96.5%位于海洋,海湾和冰川中。地下水是饮用水的主要来源,仅占总水量的1.69%,其中,淡水仅占0.76%[4]。在《纽约时报》最近的一篇文章中[5],指出有17个国家面临严重的缺水压力。除了与缺水有关的问题外,全球水质也面临着重大挑战,这与来自有机废物和无机肥料的过多养分(例如氮(N)和磷(P))有关。在动物高产地区,土壤中过量的氮和磷进入水体,导致缺氧,导致藻类大量繁殖,鱼类死亡以及对旅游业乃至人类健康的进一步影响。新兴的有机污染物,如抗生素,激素,全氟烷基物质和多氟烷基物质(PFAS)等,以及它们对饮用水的影响,也引起了人们的极大关注,尤其是随着人口的增加。所有这些污染物都会影响人类健康和我们的经济活力。

二氧化碳水平一直以惊人的速度增长,尤其是在过去的几十年中。在工业革命之前,CO 2含量约为280 ppm。到2019年,它们已上升到410 ppm以上,这是三百万年前的最高水平。据估计,人类活动导致全球升温超过工业化前水平约1.0℃,可能范围为0.8–1.2℃,如果以目前的速度持续升温,到2030年至2052年可能达到1.5℃。 [6](图2)。最近几年是有记录以来最热的一年。许多科学家将这一地质时期称为人类世,作为确凿的科学证据表明人类正在对地球产生重大影响。正如阿尔多·利奥波德(Aldo Leopold)在1933年深刻地指出的那样,“土地对居住的反应决定了人类文明的性质和持续时间”。

图2
图2

全球温度随时间变化

全尺寸图片

温室气体排放量的增加和温度的升高导致冰川融化,积雪减少,海冰减少,海平面上升,海洋酸化以及大气水蒸气增加。极端事件,例如强降雨,热浪,森林大火和干旱正变得越来越频繁[7]。就海平面上升而言,自1900年以来,全球海平面上升了0.18–0.20 m,其中约有一半(0.08 m)自1993年以来发生。海平面上升导致沿海地区洪水泛滥。如果全球升温1.5℃,到2100年,全球平均海平面将继续上升,模型预测为增加0.26-0.77 m [6]。美国大陆上最脆弱的地区是大西洋和墨西哥湾沿岸。沉降或下沉的土地使问题更加复杂,例如,美国中大西洋沿岸地区随着海平面和洪水的增加,土地和地下水的盐碱化也在增加。此外,大西洋和墨西哥湾沿岸有2500个站点,在人口稠密的地区受到金属,准金属和有机化学物质的污染[8](图3)。尚不清楚洪水和海平面上升以及随之而来的盐度如何影响污染物循环和人类健康。

图3
图3

在美国受洪水侵袭的地点

全尺寸图片

人们非常关注温度升高对多年冻土融化的影响。多年冻土土壤在前3 m的土壤中固存1035毫克碳(C)[9],约占当前全球前3 m(1500 Pg C)碳储量估计值的70%[10] ]。研究已经表明,融化的永冻土中释放出的高活性碳组分[11,12,13]。广场等。[14]通过量化与固定灰分含量有关的碳,测量了阿拉斯加温暖和周围苔原生态系统在5年内土壤碳库的变化。他们发现C / year损失了5.4%。他们将大部分损失归因于横向水文出口。在最近的一篇论文中,海明威等人。[15]发现紧密结合矿物质的OC持续了数千年。了解变暖在释放C中的作用至关重要,

鉴于上述环境挑战,显然在未来5-10年中,环境土壤化学的主要研究领域将集中在气候变化对各种土壤化学和矿物反应及过程的影响上。这些和其他领域的进步将在很大程度上归因于分析工具,数据科学和建模功能的快速发展。正如诺贝尔奖获得者悉尼·布伦纳(Sydney Brenner)曾经说过的那样,“(科学方面的)进步取决于技术,发现和思想的相互作用,可能按重要性顺序排列[21]。

一些主要的研究重点和需求包括:

  • 海平面上升,盐水入侵和洪水对无机和有机污染物(例如金属(胶体)和养分)循环的影响

  • 抗生素,激素,PFAS和其他新兴污染物的去向和运输

  • 多年冻土升温对碳与土壤矿物复合和释放以及温室气体排放的影响

  • 整合时空尺度的建模

  • 基于场的光谱技术的进展

  • 实时传感器的开发和部署

  • 在分子尺度上实时研究土壤化学反应性

  • 耦合的物理,化学和生物过程研究

  • 矿物质/微生物相互作用的机制

  • 使用新的嫩和软X射线技术了解土壤中轻元素化学(例如Al,B,Ca和S)的进展

尽管在未来十年中,环境土壤化学研究将有许多令人兴奋的机遇,但现在和将来仍然存在着严峻的挑战。基本的基础研究是该领域一些最开创性研究的标志之一。过去,土壤化学家能够在多个时期内专注于几个领域,因此他们可以“深入”到这一主题并成为领先的专家。由于多个时期的资金连续性,使之成为可能。在过去的十年或更长时间里,机构资金以及来自联邦机构和私营部门的资金减少了。此外,资助者支持的研究重点领域也经常变化,这导致科学家经常从一个话题转移到另一个话题。从而,很难在特定区域内长时间工作并被视为专家。这种焦点转移可能有害地影响科学家的长期声誉。艾伯特·爱因斯坦(Albert Einstein)最好地总结了我对基础,基础研究和深入研究某个特定领域的迫切需求的想法,他说:“我对忍受木板,寻找其最薄部分的科学家几乎没有耐心,并在容易钻孔的地方钻孔很多”。资助机构还存在创建大型团队科学计划的趋势,在该计划中,通常来自不同机构的多个研究人员将对跨学科项目进行研究。毫无疑问,环境土壤化学研究中的许多重大挑战和机遇都需要一种跨学科的方法。尽管土壤化学家必须从根本上着重于几个领域,但他们应该利用跨学科的激动人心的研究机会。但是,对于主要从事大型跨学科科学项目的个人科学家(尤其是早期职业科学家)的不利影响是,他们的个人研究产品(即参考论文)通常没有获得仅包含它们的出版物而获得的信誉度。他们的学生/博士后。最近有人质疑大型团队科学对整体研究的重大影响。在Wu等人的最新论文中。[22],超过6400万篇论文,对1954年至2014年期间的专利和软件产品进行了审查。结果表明,小团队的科学家倾向于产生有影响力的结果和想法,而大团队则发展现有的想法。

我们面临的环境挑战令人生畏。但是,挑战充满机遇。分析工具和网络基础设施的进步为土壤化学家提供了令人兴奋的机会,以解决和帮助解决人类面临的一些最紧迫的问题。简而言之,环境土壤化学的未来确实是光明的。

  1. 1。

    粮农组织和国际植检措施标准(2015),世界土壤资源状况(主要报告)。联合国粮食及农业组织和政府间土壤技术小组,意大利罗马

  2. 2。

    Amundson R,Berhe AA,Hopmans JW,Olson C,Sztein AE,Sparks DL(2015)21世纪的土壤与人类安全。科学348:6235

    • 文章
    • 谷歌学术
  3. 3。

    IPCC(2019)气候变化与土地。政府间气候变化专门委员会关于气候变化,荒漠化,土地退化,可持续土地管理,粮食安全和陆地生态系统中温室气体通量的特别报告

  4. 4。

    Gleick PH(1996)水资源。在:Schneider SH(ed)气候和天气百科全书中。牛津大学出版社,纽约,第817–823页

    • 谷歌学术
  5. 5,

    Sengupta S,Cai W(2019)四分之一的人类面临着迫在眉睫的水危机。纽约时报https://www.nytimes.com/interactive/2019/08/06/climate/world-water-stress.html

  6. 6。

    IPCC(2018)1.5C全球变暖。在加强全球应对气候变化,可持续发展和消除贫困的努力的背景下,IPCC关于全球升温超过工业化前水平1.5 C的影响及相关全球温室气体排放路径的特别报告

  7. 7

    全球变化研究计划(2018)美国的影响,风险和适应。第四次国家气候评估,华盛顿特区

    • 谷歌学术
  8. 8。

    USGCRP(2017)气候科学特别报告:第四次国家气候评估,第一卷。于:Wuebbles DJ,Fahey DW,Hibbard KA,Dokken DJ,Stewart BC,Maycock TK编辑。美国全球变化研究计划。华盛顿特区https://doi.org/10.7930/j0j964j6

  9. 9。

    Schuur EA,Bockheim J,Canadell JG,Euskirchen E,CB,Goryachkin SV,Hagemann S,Kuhry P,Lafleur PM,Lee H(2008)多年冻土碳对气候变化的脆弱性:对全球碳循环的影响。生物科学58:701–714

    • 文章
    • 谷歌学术
  10. 10。

    Scharlemann JP,Tanner EV,Hiederer R,Kapos V(2014)全球土壤碳:了解和管理最大的陆地碳库。碳水化合物。5:81–91

    • 谷歌学术
  11. 11。

    Drake TW,Wickland KP,Spencer RG,McKnight DM,Striegl RG(2015)永久冻土中古老的低分子量有机酸在融化后会迅速产生二氧化碳。Pro Nat Acad科学。112:13946–13951

    • 文章
    • 谷歌学术
  12. 12

    Waldrop MP,Wickland KP,White Iii R,Berhe AA,Harden JW,Romanovsky VE(2010)对全球重要碳库的分子研究:阿拉斯加土壤中永久冻土保护的碳。球昌生物。16:2543–2554

    • 谷歌学术
  13. 13

    Burkert A,Douglas TA,Waldrop MP,Mackelprang R(2019)更新世多年冻土时间序列中活跃,死亡和休眠微生物群落结构的变化。应用环境微生物。85:7

    • 文章
    • 谷歌学术
  14. 14。

    C广场,Pegoraro E,Bracho R,Celis G,Crummer KG,Hutchings JA,Hicks Pries CE,Mauritz M,Natali SM,Salmon VG,Schadel C,Webb EE,Schuur EAG(2019)直接观察永久冻土的退化和快速土壤苔原的碳损失。Nat Geosci 12:627–631

    • 文章
    • 谷歌学术
  15. 15

    Hemingway JD,Rothman DH,Grant KE,Rosengard SZ,Eglinton TI,Derry LA,Galy VV(2019)矿物保护规范了全球对天然有机碳的长期保存。性质。570:228–231

    • 文章
    • 谷歌学术
  16. 16。

    Chen C,Dynes JJ,Wang J,Sparks DL(2014)通过共沉淀与吸附的铁有机物缔合特性。环保科技 48:13751–13759

    • 文章
    • 谷歌学术
  17. 17。

    Gu B,Schmitt J,Chen Z,Liang L,McCarthy JF(1994)天然有机物在氧化铁上的吸附和解吸:机理和模型。环保科技 28:38–46

    • 文章
    • 谷歌学术
  18. 18岁

    Gu B,Schmitt J,Chen Z,Liang L,McCarthy JF(1995)在氧化铁上吸附和解吸不同有机物组分。乔奇宇宙法。59:219–229

    • 文章
    • 谷歌学术
  19. 19

    Lalonde K,Mucci A,Ouellet A,GélinasY(2012)保护铁促进沉积物中的有机物。纳特 483:198–200

    • 文章
    • 谷歌学术
  20. 20

    Lehmann J,Kinyangi J,Solomon D(2007)土壤微骨料中的有机物稳定化:有机碳含量和碳形式的空间异质性的影响。生物地球化学。85:45–57

    • 文章
    • 谷歌学术
  21. 21

    Kenyon C(2019)悉尼·布伦纳(1927–2019)。分子生物学和遗传学的先驱。科学364:638

    • 文章
    • 谷歌学术
  22. 22

    Wu L,Wang D,Evans JA(2019)大团队发展,小团队破坏科学技术。性质。566:378–382

    • 文章
    • 谷歌学术

下载参考

我要特别感谢圣路易斯华盛顿大学的Young-Shin Jun,怀俄明大学的Mengqiang Zhu和萨斯喀彻温大学的Derek Peak,他们是本期特刊的编辑,并邀请我撰写专题文章,并感谢所有作者的杰出贡献。

隶属关系

  1. 美国特拉华大学,特拉华大学,特拉华环境研究所,特拉华州,71616,美国
    • 唐纳德·L·斯帕克斯
作者
  1. Donald L. Sparks查看作者出版物您也可以在以下位置搜索该作者
    • 考研
    • 谷歌学术

会费

DLS起草了手稿。作者阅读并批准了最终稿。

通讯作者

与Donald L. Sparks的往来信件。

利益争夺

作者宣称他们没有竞争利益。

发行人须知

对于出版的地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用栏中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期用途未得到法律法规的许可或超出了许可的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

DL Sparks环境土壤化学的黄金时期。地球化学反式 21, 5(2020)。https://doi.org/10.1186/s12932-020-00068-6

下载引文

  • 发表时间

  • DOI https //doi.org/10.1186/s12932-020-00068-6

更新日期:2020-04-22
down
wechat
bug