当前位置: X-MOL 学术Rev. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Climate Changes and Their Elevational Patterns in the Mountains of the World
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2022-01-11 , DOI: 10.1029/2020rg000730
N.C. Pepin 1 , E. Arnone 2, 3 , A. Gobiet 4 , K. Haslinger 4 , S. Kotlarski 5 , C. Notarnicola 6 , E. Palazzi 3 , P. Seibert 7 , S. Serafin 8 , W. Schöner 9 , S. Terzago 3 , J.M. Thornton 10 , M. Vuille 11 , C. Adler 10
Affiliation  

Quantifying rates of climate change in mountain regions is of considerable interest, not least because mountains are viewed as climate “hotspots” where change can anticipate or amplify what is occurring elsewhere. Accelerating mountain climate change has extensive environmental impacts, including depletion of snow/ice reserves, critical for the world's water supply. Whilst the concept of elevation-dependent warming (EDW), whereby warming rates are stratified by elevation, is widely accepted, no consistent EDW profile at the global scale has been identified. Past assessments have also neglected elevation-dependent changes in precipitation. In this comprehensive analysis, both in situ station temperature and precipitation data from mountain regions, and global gridded data sets (observations, reanalyses, and model hindcasts) are employed to examine the elevation dependency of temperature and precipitation changes since 1900. In situ observations in paired studies (using adjacent stations) show a tendency toward enhanced warming at higher elevations. However, when all mountain/lowland studies are pooled into two groups, no systematic difference in high versus low elevation group warming rates is found. Precipitation changes based on station data are inconsistent with no systematic contrast between mountain and lowland precipitation trends. Gridded data sets (CRU, GISTEMP, GPCC, ERA5, and CMIP5) show increased warming rates at higher elevations in some regions, but on a global scale there is no universal amplification of warming in mountains. Increases in mountain precipitation are weaker than for low elevations worldwide, meaning reduced elevation-dependency of precipitation, especially in midlatitudes. Agreement on elevation-dependent changes between gridded data sets is weak for temperature but stronger for precipitation.

中文翻译:

世界山区的气候变化及其海拔模式

量化山区气候变化的速率具有相当大的意义,尤其是因为山区被视为气候“热点”,变化可以预测或放大其他地方正在发生的事情。加速山区气候变化会产生广泛的环境影响,包括消耗对世界供水至关重要的冰雪储备。虽然海拔依赖变暖 (EDW) 的概念,即升温速率按海拔分层,已被广泛接受,但尚未确定全球范围内一致的 EDW 剖面。过去的评估也忽略了降水中依赖于海拔的变化。在这项综合分析中,既有来自山区的现场站温度和降水数据,也有全球网格数据集(观测、再分析、和模型后报)用于检查自 1900 年以来温度和降水变化的海拔依赖性。配对研究中的原位观测(使用相邻站)显示在较高海拔处变暖的趋势。然而,当所有的山地/低地研究归为两组时,没有发现高海拔组和低海拔组升温率的系统差异。基于站点数据的降水变化不一致,山区和低地降水趋势之间没有系统对比。网格化数据集(CRU、GISTEMP、GPCC、ERA5 和 CMIP5)显示,在某些地区,高海拔地区变暖速率增加,但在全球范围内,山区变暖并没有普遍放大。山区降水的增加比全球低海拔地区要弱,意味着降水对海拔的依赖性降低,尤其是在中纬度地区。网格数据集之间依赖于海拔变化的协议对于温度来说是弱的,但对于降水来说是强的。
更新日期:2022-01-11
down
wechat
bug