当前位置: X-MOL 学术Ecol. Monogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrodynamics structure plankton communities and interactions in a freshwater tidal estuary
Ecological Monographs ( IF 6.1 ) Pub Date : 2023-02-15 , DOI: 10.1002/ecm.1567
Adrianne P. Smits 1 , Luke C. Loken 1, 2 , Erwin E. Van Nieuwenhuyse 3 , Matthew J. Young 4 , Paul R. Stumpner 5 , Leah E. K. Lenoch 5 , Jon R. Burau 5 , Randy A. Dahlgren 6 , Tiffany Brown 7 , Steven Sadro 1
Affiliation  

Drivers of phytoplankton and zooplankton dynamics vary spatially and temporally in estuaries due to variation in hydrodynamic exchange and residence time, complicating efforts to understand controls on food web productivity. We conducted approximately monthly (2012–2019; n = 74) longitudinal sampling at 10 fixed stations along a freshwater tidal terminal channel in the San Francisco Estuary, California, characterized by seaward to landward gradients in water residence time, turbidity, nutrient concentrations, and plankton community composition. We used multivariate autoregressive state space (MARSS) models to quantify environmental (abiotic) and biotic controls on phytoplankton and mesozooplankton biomass. The importance of specific abiotic drivers (e.g., water temperature, turbidity, nutrients) and trophic interactions differed significantly among hydrodynamic exchange zones with different mean residence times. Abiotic drivers explained more variation in phytoplankton and zooplankton dynamics than a model including only trophic interactions, but individual phytoplankton–zooplankton interactions explained more variation than individual abiotic drivers. Interactions between zooplankton and phytoplankton were strongest in landward reaches with the longest residence times and the highest zooplankton biomass. Interactions between cryptophytes and both copepods and cladocerans were stronger than interactions between bacillariophytes (diatoms) and zooplankton taxa, despite contributing less biovolume in all but the most landward reaches. Our results demonstrate that trophic interactions and their relative strengths vary in a hydrodynamic context, contributing to food web heterogeneity within estuaries at spatial scales smaller than the freshwater to marine transition.

中文翻译:

淡水潮汐河口的流体动力学结构浮游生物群落和相互作用

由于水动力交换和停留时间的变化,浮游植物和浮游动物动力学的驱动因素在河口的空间和时间上有所不同,这使得理解食物网生产力控制的努力变得复杂。我们大约每月进行一次(2012-2019 年;n = 74) 在加利福尼亚州旧金山河口的淡水潮汐终端通道沿线的 10 个固定站进行纵向采样,其特征是水停留时间、浊度、营养浓度和浮游生物群落组成的向海向陆地梯度。我们使用多元自回归状态空间 (MARSS) 模型来量化环境(非生物)和生物对浮游植物和中型浮游动物生物量的控制。特定非生物驱动因素(例如,水温、浊度、养分)和营养相互作用的重要性在具有不同平均停留时间的流体动力交换区之间存在显着差异。与仅包含营养相互作用的模型相比,非生物驱动因素解释了浮游植物和浮游动物动力学的更多变化,但是个体浮游植物-浮游动物的相互作用比个体非生物驱动因素解释了更多的变异。浮游动物和浮游植物之间的相互作用在停留时间最长和浮游动物生物量最高的陆地河段最强。隐花植物与桡足类和枝角类动物之间的相互作用强于硅藻类(硅藻)和浮游动物类群之间的相互作用,尽管在除了最靠近陆地的河段以外的所有河段贡献的生物量较少。我们的研究结果表明,营养相互作用及其相对强度在流体动力学背景下会发生变化,从而导致河口内食物网的异质性,其空间尺度小于淡水到海洋的过渡。浮游动物和浮游植物之间的相互作用在停留时间最长和浮游动物生物量最高的陆地河段最强。隐花植物与桡足类和枝角类动物之间的相互作用强于硅藻类(硅藻)和浮游动物类群之间的相互作用,尽管在除了最靠近陆地的河段以外的所有河段贡献的生物量较少。我们的研究结果表明,营养相互作用及其相对强度在流体动力学背景下会发生变化,从而导致河口内食物网的异质性,其空间尺度小于淡水到海洋的过渡。浮游动物和浮游植物之间的相互作用在停留时间最长和浮游动物生物量最高的陆地河段最强。隐花植物与桡足类和枝角类动物之间的相互作用强于硅藻类(硅藻)和浮游动物类群之间的相互作用,尽管在除了最靠近陆地的河段以外的所有河段贡献的生物量较少。我们的研究结果表明,营养相互作用及其相对强度在流体动力学背景下会发生变化,从而导致河口内食物网的异质性,其空间尺度小于淡水到海洋的过渡。尽管除了最靠近陆地的河段外,所有河段的生物量都较少。我们的研究结果表明,营养相互作用及其相对强度在流体动力学背景下会发生变化,从而导致河口内食物网的异质性,其空间尺度小于淡水到海洋的过渡。尽管除了最靠近陆地的河段外,所有河段的生物量都较少。我们的研究结果表明,营养相互作用及其相对强度在流体动力学背景下会发生变化,从而导致河口内食物网的异质性,其空间尺度小于淡水到海洋的过渡。
更新日期:2023-02-15
down
wechat
bug