当前位置: X-MOL 学术Soft Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic Continuum Robot with Intraoperative Magnetic Moment Programming.
Soft Robotics ( IF 7.9 ) Pub Date : 2023-07-05 , DOI: 10.1089/soro.2022.0202
Yanfei Cao 1 , Zhengxin Yang 1, 2 , Bo Hao 1 , Xin Wang 1 , Mingxue Cai 1 , Zhaoyang Qi 1 , Bonan Sun 1 , Qinglong Wang 1 , Li Zhang 1, 3, 4, 5
Affiliation  

Magnetic continuum robots (MCRs), which are free of complicated structural designs for transmission, can be miniaturized and are therefore widely used in the medical field. However, the deformation shapes of different segments, including deflection directions and curvatures, are difficult to control simultaneously under an external programmable magnetic field. This is because the latest MCRs have designs with an invariable magnetic moment combination or profile of one or more actuating units. Therefore, the limited dexterity of the deformation shape causes the existing MCRs to collide readily with their surroundings or makes them unable to approach difficult-to-reach regions. These prolonged collisions are unnecessary or even hazardous, especially for catheters or similar medical devices. In this study, a novel magnetic moment intraoperatively programmable continuum robot (MMPCR) is introduced. By applying the proposed magnetic moment programming method, the MMPCR can deform under three modalities, that is, J, C, and S shapes. Additionally, the deflection directions and curvatures of different segments in the MMPCR can be modulated as desired. Furthermore, the magnetic moment programming and MMPCR kinematics are modeled, numerically simulated, and experimentally validated. The experimental results exhibit a mean deflection angle error of 3.3° and correspond well with simulation results. Comparisons between navigation capacities of the MMPCR and MCR demonstrate that the MMPCR has a higher capacity for dexterous deformation.

中文翻译:

具有术中磁矩编程的磁连续体机器人。

磁连续体机器人(MCR)由于无需复杂的传动结构设计,可以实现小型化,因此在医疗领域得到广泛应用。然而,不同段的变形形状,包括偏转方向和曲率,在外部可编程磁场下很难同时控制。这是因为最新的 MCR 的设计具有一个或多个执行单元的不变磁矩组合或轮廓。因此,变形形状的灵活性有限,导致现有的MCR很容易与周围环境发生碰撞,或者无法接近难以到达的区域。这些长时间的碰撞是不必要的,甚至是危险的,特别是对于导管或类似的医疗设备而言。在这项研究中,介绍了一种新型磁矩术中可编程连续体机器人(MMPCR)。通过应用所提出的磁矩编程方法,MMPCR可以在三种形态下变形,即J形、C形和S形。此外,MMPCR中不同段的偏转方向和曲率可以根据需要进行调制。此外,还对磁矩编程和 MMPCR 运动学进行了建模、数值模拟和实验验证。实验结果显示平均偏转角误差为3.3°,与仿真结果吻合良好。MMPCR和MCR导航能力的比较表明MMPCR具有更高的灵巧变形能力。MMPCR可以在三种形态下变形,即J形、C形和S形。此外,MMPCR中不同段的偏转方向和曲率可以根据需要进行调制。此外,还对磁矩编程和 MMPCR 运动学进行了建模、数值模拟和实验验证。实验结果显示平均偏转角误差为3.3°,与仿真结果吻合良好。MMPCR和MCR导航能力的比较表明MMPCR具有更高的灵巧变形能力。MMPCR可以在三种形态下变形,即J形、C形和S形。此外,MMPCR中不同段的偏转方向和曲率可以根据需要进行调制。此外,还对磁矩编程和 MMPCR 运动学进行了建模、数值模拟和实验验证。实验结果显示平均偏转角误差为3.3°,与仿真结果吻合良好。MMPCR和MCR导航能力的比较表明MMPCR具有更高的灵巧变形能力。并经过实验验证。实验结果显示平均偏转角误差为3.3°,与仿真结果吻合良好。MMPCR和MCR导航能力的比较表明MMPCR具有更高的灵巧变形能力。并经过实验验证。实验结果显示平均偏转角误差为3.3°,与仿真结果吻合良好。MMPCR和MCR导航能力的比较表明MMPCR具有更高的灵巧变形能力。
更新日期:2023-07-05
down
wechat
bug