当前位置: X-MOL 学术Finite Elem. Anal. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress-based topology optimization approach using binary variables and geometry trimming
Finite Elements in Analysis and Design ( IF 3.1 ) Pub Date : 2023-09-21 , DOI: 10.1016/j.finel.2023.104044
César Y. Kiyono , Renato Picelli , Raghavendra Sivapuram , Daniel M. De Leon , Emílio C.N. Silva

In this paper a new approach to handle stress-based topology optimization problems by using the Topology Optimization of Binary Structures method is presented. The design update is carried out with binary values (0 or 1) and a boundary identification scheme is employed to smooth the structural contours to avoid artificial stress concentrations that can occur because of the jagged nature of the topology optimization process. Because of the boundary identification, re-meshing is necessary at each iteration. To minimize the discontinuity of the moving domain through the iterations, we define two domains. The first one is the extended domain (called topology domain) which is fixed, meshed only in the beginning of the optimization process. It is where the design variables are defined, and the mass constraint and its sensitivity are calculated. The second one (called analysis domain) is the structure with the boundary already identified, where the finite element analysis is carried out and the objective function and its sensitivity are calculated. The objective function sensitivity must be interpolated to the optimization domain only where the design variables indicate solid regions. A spatial filtering technique is applied to avoid numerical instabilities and to extrapolate to void regions. Numerical examples are presented to demonstrate the methodology efficiency.



中文翻译:

使用二元变量和几何修剪的基于应力的拓扑优化方法

本文提出了一种使用二元结构拓扑优化来处理基于应力的拓扑优化问题的新方法提出了方法。使用二进制值(0 或 1)进行设计更新,并采用边界识别方案来平滑结构轮廓,以避免由于拓扑优化过程的锯齿状性质而可能出现的人为应力集中。由于边界识别,每次迭代都需要重新划分网格。为了通过迭代最小化移动域的不连续性,我们定义两个域。第一个是扩展域(称为拓扑域),它是固定的,仅在优化过程开始时划分网格。它是定义设计变量、计算质量约束及其灵敏度的地方。第二个(称为分析域)是边界已确定的结构,其中进行有限元分析并计算目标函数及其灵敏度。仅当设计变量指示实体区域时,才必须将目标函数灵敏度插值到优化域。应用空间滤波技术来避免数值不稳定并外推到空白区域。给出了数值例子来证明该方法的效率。

更新日期:2023-09-21
down
wechat
bug