当前位置: X-MOL 学术Int. J. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Smart electro-magneto-viscoelastomer minimum energy structures with particle-reinforcements: Theoretical equilibrium and nonlinear dynamics of actuated configurations
International Journal of Engineering Science ( IF 6.6 ) Pub Date : 2023-11-28 , DOI: 10.1016/j.ijengsci.2023.103974
A. Khurana , S. Naskar , R.K. Varma , T. Mukhopadhyay

Soft transduction technology is rapidly adopting soft active elastomer-based minimum energy structures because of their distinctive programmable shape-morphing characteristics. For effective device design, an understanding of the nonlinear dynamic behavior is crucial as they often experience time-dependent motion while operating. Moreover, there has been an increasing scientific interest in enhancing the actuation performance of soft active elastomers by imparting particle reinforcements. This article provides a theoretical framework for investigating the nonlinear dynamics of smart composite elastomer-based minimum energy structures (SCEMES) with the provision of non-aligned electric and magnetic fields, leading to an actively programmable pre-stretch paradigm. Unlike conventional actuators, the proposed SCEMES is made up of a polymer that has electro-magnetic properties and is filled with appropriate fillers with specific volume fractions. An electromagneto-viscoelastic model is developed here to predict actuator behavior and investigate the effects of particle reinforcement on equilibrium and actuated configurations. Besides strengthening the polymer, particle reinforcement is observed to enhance the equilibrium angle achieved by the structure with enhanced functionality. The proposed nonlinear dynamic model is extended to investigate a number of critically influential parameters, including shear modulus ratio of fiber to matrix, frame bending stiffness, membrane pre-stretching, and electro-magnetic loading with time-dependent DC and AC modes of actuation. The results reveal that the combined electro-magnetic actuation enhances the actuation range significantly. The attained tip angle of the actuator increases appreciably when the magnetic and electric fields are applied mutually perpendicular to each other, indicating that the direction of applied magnetic field governs the attained actuated configuration. Further, particle reinforcement enrichments result in a depletion in oscillation amplitudes and an increase in excitation frequencies under the AC actuation mode. The efficient semi-analytical framework presented here would be crucial in developing new actuators, smart devices and soft robots for a variety of advanced engineering and medical applications.



中文翻译:

具有粒子增强的智能电磁粘弹性体最小能量结构:驱动配置的理论平衡和非线性动力学

由于其独特的可编程变形特性,软传导技术正在迅速采用基于软活性弹性体的最小能量结构。对于有效的设备设计,了解非线性动态行为至关重要,因为它们在运行时经常经历与时间相关的运动。此外,人们对通过赋予颗粒增强材料来增强软活性弹性体的驱动性能越来越感兴趣。本文提供了一个理论框架,用于研究基于智能复合弹性体的最小能量结构 (SCEMES) 的非线性动力学,提供不对齐的电场和磁场,从而形成主动可编程的预拉伸范例。与传统的执行器不同,所提出的 SCEMES 由具有电磁特性的聚合物制成,并填充有特定体积分数的适当填料。这里开发了电磁粘弹性模型来预测执行器行为并研究粒子增强对平衡和驱动配置的影响。除了增强聚合物之外,还观察到颗粒增强可以增强具有增强功能的结构所实现的平衡角。所提出的非线性动力学模型被扩展以研究许多具有关键影响的参数,包括纤维与基体的剪切模量比、框架弯曲刚度、膜预拉伸以及具有与时间相关的直流和交流驱动模式的电磁载荷。结果表明,组合电磁驱动显着提高了驱动范围。当磁场和电场相互垂直地施加时,致动器所获得的尖端角度明显增加,这表明所施加的磁场的方向控制所获得的致动配置。此外,颗粒强化富集导致交流驱动模式下振荡幅度的减小和激励频率的增加。这里提出的高效半分析框架对于开发用于各种先进工程和医疗应用的新型执行器、智能设备和软机器人至关重要。

更新日期:2023-11-29
down
wechat
bug