当前位置: X-MOL 学术Nat. Rev. Endocrinol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pituitary stem cells: past, present and future perspectives
Nature Reviews Endocrinology ( IF 40.5 ) Pub Date : 2023-12-15 , DOI: 10.1038/s41574-023-00922-4
María Inés Pérez Millán , Leonard Y. M. Cheung , Florencia Mercogliano , Maria Andrea Camilletti , Gonzalo T. Chirino Felker , Lucia N. Moro , Santiago Miriuka , Michelle L. Brinkmeier , Sally A. Camper

Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.



中文翻译:


垂体干细胞:过去、现在和未来的前景



表达转录因子 SOX2 的垂体细胞是干细胞,因为它们可以自我更新并分化成多种垂体激素产生细胞类型(如类器官)。受伤和生理挑战可以激活垂体干细胞,但细胞数量并未完全恢复,而且动员干细胞的能力随着年龄的增长而降低。这些限制的基础仍然未知。干细胞静止和激活的调节涉及许多不同的信号通路,包括由WNT、Hippo和多种细胞因子介导的信号通路;需要更多的研究来了解这些途径之间的相互作用。垂体类器官可由人类或小鼠胚胎干细胞或人类诱导多能干细胞形成。人垂体类器官移植足以诱导垂体切除小鼠释放皮质酮,从而提高了治疗应用的可能性。如今,垂体类器官有潜力评估单个基因和遗传变异对离体激素产生的作用,为推进垂体干细胞生物学和垂体器官发生领域的激动人心的前沿领域提供重要工具。在本文中,我们概述了垂体干细胞功能的显着发现,并强调了未来研究的重要领域。

更新日期:2023-12-15
down
wechat
bug