当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Convective heat transport and entropy generation in butterfly-shaped magneto-nanofluidic systems with bottom heating and top cooling
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.2 ) Pub Date : 2023-12-26 , DOI: 10.1108/hff-06-2023-0353
Aniket Halder , Arabdha Bhattacharya , Nirmalendu Biswas , Nirmal K. Manna , Dipak Kumar Mandal

Purpose

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic irreversibility, within a novel butterfly-shaped cavity. Gaining a thorough understanding of these phenomena will help to facilitate the design and optimization of thermal systems with complex geometries under magnetic fields in diverse applications.

Design/methodology/approach

To achieve the objective, the finite element method is used to solve the governing equations of the problem. The effects of various controlling parameters such as butterfly-shaped triangle vertex angle (T), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ ) on the hydrothermal performance are analyzed meticulously. By investigating the effects of these parameters, the authors contribute to the existing knowledge by shedding light on their influence on heat and fluid transport within butterfly-shaped cavities.

Findings

The major findings of this study reveal that the geometrical shape significantly alters fluid motion, heat transfer and irreversibility production. Maximum heat transfer, as well as entropy generation, occurs when the Rayleigh number reaches its maximum, the Hartmann number is minimized and the angle of the magnetic field is set to 30° or 150°, while the butterfly wings angle or vertex angle is kept at a maximum of 120°. The intensity of the magnetic field significantly controls the heat flow dynamics, with higher magnetic field strength causing a reduction in the flow strength as well as heat transfer. This configuration optimizes the heat transfer characteristics in the system.

Research limitations/implications

Further research can be expanded on this study by examining thermal performance under different curvature effects, orientations, boundary conditions and additional factors. This can be accomplished through numerical simulations or experimental investigations under various multiphysical scenarios.

Practical implications

The geometric configurations explored in this research have practical applications in various engineering fields, including heat exchangers, crystallization processes, microelectronic devices, energy storage systems, mixing processes, food processing, air-conditioning, filtration and more.

Originality/value

This study brings value by exploring a novel geometric configuration comprising the nanofluidic flow, and MHD effect, providing insights and potential innovations in the field of thermal fluid dynamics. The findings contribute a lot toward maximizing thermal performance in diverse fields of applications. The comparison of different hydrothermal behavior and thermodynamic entropy production under the varying geometric configuration adds novelty to this study.



中文翻译:

底部加热顶部冷却的蝴蝶形磁纳流体系统中的对流热传输和熵产生

目的

本研究的目的是在新型蝴蝶形腔内对磁流体动力学(MHD)、纳米流体动力学和传热以及热力学不可逆性进行综合分析。深入了解这些现象将有助于促进各种应用中磁场下具有复杂几何形状的热系统的设计和优化。

设计/方法论/途径

为了实现这一目标,采用有限元方法求解问题的控制方程。详细分析了蝶形三角形顶角( T )、瑞利数( Ra )、哈特曼数( Ha )和磁场倾角(γ)等控制参数对水热性能的影响。通过研究这些参数的影响,作者揭示了它们对蝴蝶形腔内热量和流体传输的影响,为现有知识做出了贡献。

发现

这项研究的主要发现表明,几何形状显着改变流体运动、传热和不可逆性产生。当瑞利数达到最大值、哈特曼数最小化并且磁场角度设置为 30° 或 150°,同时保持蝴蝶翅膀角度或顶角时,会发生最大传热以及熵产生。最大 120°。磁场强度显着控制热流动力学,较高的磁场强度会导致流动强度和传热降低。这种配置优化了系统中的传热特性。

研究局限性/影响

可以通过检查不同曲率效应、方向、边界条件和其他因素下的热性能来扩展本研究的进一步研究。这可以通过各种多物理场景下的数值模拟或实验研究来完成。

实际影响

本研究探索的几何构型在各个工程领域都有实际应用,包括热交换器、结晶过程、微电子器件、储能系统、混合过程、食品加工、空调、过滤等。

原创性/价值

这项研究通过探索一种包含纳米流体流动和 MHD 效应的新颖几何结构来带来价值,为热流体动力学领域提供了见解和潜在创新。这些发现对于最大限度地提高不同应用领域的热性能做出了很大贡献。不同几何构型下不同水热行为和热力学熵产生的比较为这项研究增添了新颖性。

更新日期:2023-12-26
down
wechat
bug