当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Conductive panel cooling by using coupled effects of nano-jet impingement, double rotating cylinders and magnetic field under cross-flow
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.2 ) Pub Date : 2024-01-09 , DOI: 10.1108/hff-09-2023-0532
Fatih Selimefendigil , Hakan F. Oztop

Purpose

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The cooling system has double rotating cylinders.

Design/methodology/approach

Cross-flow ratios (CFR) ranging from 0.1 to 1, magnetic field strength (Ha) ranging from 0 to 50 and cylinder rotation speed (Rew) ranging from −5,000 to 5,000 are the relevant parameters that are included in the numerical analysis. Finite element method is used as solution technique. Radial basis networks are used for the prediction of average Nusselt number (Nu), average surface temperature of the panel and temperature uniformity effects when varying the impacts of cross-flow, magnetic field and rotations of the double cylinder in the cooling channel.

Findings

The effect of CFR on cooling efficiency and temperature uniformity is favorable. By raising the CFR to the highest value under the magnetic field, the average Nu can rise by up to 18.6%, while the temperature drop and temperature difference are obtained as 1.87°C and 3.72°C. Without cylinders, magnetic field improves the cooling performance, while average Nu increases to 4.5% and 8.8% at CR = 0.1 and CR = 1, respectively. When the magnetic field is the strongest with cylinders in channel at CFR = 1, temperature difference (ΔT) is obtained as 2.5 °C. The rotational impacts on thermal performance are more significant when the cross-flow effects are weak (CFR = 0.1) compared to when they are substantial (CFR = 1). Cases without a cylinder have the worst performance for both weak and severe cross-flow effects, whereas using two rotating cylinders increases cooling performance and temperature uniformity for the conductive panel. The average surface temperature lowers by 1.2°C at CFR = 0.1 and 0.5°C at CFR = 1 when the worst and best situations are compared.

Originality/value

The outcomes are relevant in the design and optimization-based studies for electric cooling, photo-voltaic cooling and battery thermal management.



中文翻译:

利用纳米射流冲击、双旋转圆柱体和横流磁场耦合效应进行传导面板冷却

目的

本研究旨在研究在均匀磁场效应下横流和多重射流冲击对导电板冷却性能的影响。冷却系统有双旋转气缸。

设计/方法论/途径

数值分析中包含的相关参数包括从 0.1 到 1 的错流比 (CFR)、从 0 到 50 的磁场强度 (Ha) 以及从 -5,000 到 5,000 的气缸转速 (Rew)。有限元法用作求解技术。径向基网络用于预测平均努塞尔数(Nu)、面板平均表面温度以及当冷却通道中的横流、磁场和双圆柱体旋转的影响变化时的温度均匀性效应。

发现

CFR对冷却效率和温度均匀性的影响是有利的。通过在磁场下将CFR提高到最高值,平均Nu可提高高达18.6%,而温降和温差分别为1.87°C和3.72°C。在没有气缸的情况下,磁场提高了冷却性能,而在 CR = 0.1 和 CR = 1 时,平均 Nu 分别增加到 4.5% 和 8.8%。当通道中的圆柱体在 CFR = 1 时磁场最强时,获得的温差 (ΔT) 为 2.5 °C。与横流效应较大时 (CFR = 1) 相比,当横流效应较弱 (CFR = 0.1) 时,旋转对热性能的影响更为显着。没有圆柱体的情况对于弱和严重的横流效应都有最差的性能,而使用两个旋转圆柱体可以提高导电板的冷却性能和温度均匀性。比较最差和最好的情况时,平均表面温度在 CFR = 0.1 时降低 1.2°C,在 CFR = 1 时降低 0.5°C。

原创性/价值

研究结果与电冷却、光伏冷却和电池热管理的设计和优化研究相关。

更新日期:2024-01-09
down
wechat
bug