当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magneto-nanofluidic thermal transport and irreversibility in semicircular systems with heated wavy bottom under constant fluid volume and cooling surface constraints
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.2 ) Pub Date : 2024-01-15 , DOI: 10.1108/hff-06-2023-0354
Nirmalendu Biswas , Deep Chatterjee , Sandip Sarkar , Nirmal K. Manna

Purpose

This study aims to investigate the influence of wall curvature in a semicircular thermal annular system on magneto-nanofluidic flow, heat transfer and entropy generation. The analysis is conducted under constant cooling surface and fluid volume constraints.

Design/methodology/approach

The mathematical equations describing the thermo-fluid flow in the semicircular system are solved using the finite element technique. Four different heating wall configurations are considered, varying the undulation numbers of the heated wall. Parametric variations of bottom wall undulation (f), buoyancy force characterized by the Rayleigh number (Ra), magnetic field strength represented by the Hartmann number (Ha) and inclination of the magnetic field (γ) on the overall thermal performance are studied extensively.

Findings

This study reveals that the fluid circulation strength is maximum in the case of a flat bottom wall. The analysis shows that the bottom wall contour and other control parameters significantly influence fluid flow, entropy production and heat transfer. The modified heated wall with a single undulation exhibits the highest entropy production and thermal convection, leading to a heat transfer enhancement of up to 21.85% compared to a flat bottom. The magnetic field intensity and orientation have a significant effect on heat transfer and irreversibility production.

Research limitations/implications

Further research can explore a wider range of parameter values, alternative heating wall profiles and boundary conditions to expand the understanding of magneto-nanofluidic flow in semicircular thermal systems.

Originality/value

This study introduces a constraint-based analysis of magneto-nanofluidic thermal behavior in a complex semicircular thermal system, providing insights into the impact of wall curvature on heat transfer performance. The findings contribute to the design and optimization of thermal systems in various applications.



中文翻译:

恒定流体体积和冷却表面约束下具有加热波状底部的半圆形系统中的磁纳流体热传输和不可逆性

目的

本研究旨在研究半圆形热环系统中壁曲率对磁纳流体流动、传热和熵产生的影响。该分析是在恒定的冷却表面和流体体积约束下进行的。

设计/方法论/途径

使用有限元技术求解描述半圆形系统中热流体流动的数学方程。考虑四种不同的加热壁配置,改变加热壁的起伏数。底壁起伏(f)、以瑞利数(Ra)为特征的浮力、以哈特曼数(Ha)为代表的磁场强度以及磁场倾角(γ)对整体热性能的参数变化进行了广泛的研究。

发现

这项研究表明,在平底壁的情况下,流体循环强度最大。分析表明,底壁轮廓和其他控制参数显着影响流体流动、熵产生和传热。具有单一起伏的改良加热壁表现出最高的熵产生和热对流,与平底相比,传热增强高达 21.85%。磁场强度和方向对传热和不可逆性产生有显着影响。

研究局限性/影响

进一步的研究可以探索更广泛的参数值、替代加热壁轮廓和边界条件,以扩大对半圆形热系统中磁纳米流体流动的理解。

原创性/价值

本研究介绍了复杂半圆形热系统中磁纳米流体热行为的基于约束的分析,深入了解壁曲率对传热性能的影响。这些发现有助于各种应用中热系统的设计和优化。

更新日期:2024-01-15
down
wechat
bug