当前位置: X-MOL 学术Annu. Rev. Earth Planet. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors
Annual Review of Earth and Planetary Sciences ( IF 14.9 ) Pub Date : 2024-01-18 , DOI: 10.1146/annurev-earth-031621-063108
Philippe Carrez 1 , Alexandre Mussi 1 , Patrick Cordier 1, 2
Affiliation  

▪ An understanding of the rheological behavior of the solid Earth is fundamental to provide a quantitative description of most geological and geophysical phenomena. The continuum mechanics approach to describing large-scale phenomena needs to be informed by a description of the mechanisms operating at the atomic scale. These involve crystal defects, mainly vacancies and dislocations. This often leads to a binary view of creep reduced to diffusion creep or dislocation creep. However, the interaction between these two types of defects leading to dislocation climb plays an important role, and may even be the main one, in the high-temperature, low strain rate creep mechanisms of interest to the Earth sciences. Here we review the fundamentals of dislocation climb, highlighting the specific problems of minerals. We discuss the importance of computer simulations, informed by experiments, for accurately modeling climb. We show how dislocation climb increasingly appears as a deformation mechanism in its own right. We review the contribution of this mechanism to mineral deformation, particularly in Earth's mantle. Finally, we discuss progress and challenges, and we outline future work directions. Dislocations can be sources or sinks of vacancies, resulting in a displacement out of the glide plane: climb. ▪ Dislocation climb can be a recovery mechanism during dislocation creep but also a strain-producing mechanism. ▪ The slow natural strain rates promote the contribution of climb, which is controlled by diffusion. ▪ In planetary interiors where dislocation glide can be inhibited by pressure, dislocation climb may be the only active mechanism.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

中文翻译:


位错爬升作为行星内部的重要变形机制



▪ 了解固体地球的流变行为对于定量描述大多数地质和地球物理现象至关重要。描述大规模现象的连续介质力学方法需要通过对原子尺度上运行机制的描述来了解。这些涉及晶体缺陷,主要是空位和位错。这通常会导致蠕变的二元观点简化为扩散蠕变或位错蠕变。然而,导致位错攀爬的这两类缺陷之间的相互作用在地球科学感兴趣的高温、低应变率蠕变机制中起着重要作用,甚至可能是主要作用。在这里,我们回顾位错爬升的基本原理,重点介绍矿物的具体问题。我们讨论了基于实验的计算机模拟对于精确模拟攀爬的重要性。我们展示了位错攀爬本身如何越来越多地表现为一种变形机制。我们回顾了这种机制对矿物变形的贡献,特别是在地幔中。最后,我们讨论了进展和挑战,并概述了未来的工作方向。位错可能是空位的来源或汇,导致滑翔面的位移:爬升。 ▪ 位错攀爬可以是位错蠕变期间的恢复机制,也可以是应变产生机制。 ▪ 缓慢的自然应变率促进了爬升的贡献,这是由扩散控制的。 ▪ 在位错滑移可能受到压力抑制的行星内部,位错爬升可能是唯一的主动机制。《地球与行星科学年度评论》第 52 卷的预计最终在线出版日期为 2024 年 5 月。请参见 http://www 。Annualreviews.org/page/journal/pubdates 了解修订后的估计。
更新日期:2024-01-18
down
wechat
bug