当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of heater positions on magneto-hydrodynamic convection of CuO-water nanofluid flow in a grooved channel
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.2 ) Pub Date : 2024-01-23 , DOI: 10.1108/hff-11-2023-0695
Md Motiur Rahaman , Nirmalendu Biswas , Apurba Kumar Santra , Nirmal K. Manna

Purpose

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The cavity undergoes isothermal heating from the bottom, with variations in the positions of heated walls across the grooved channel. The aim is to assess the impact of heater positions on thermal performance and identify the most effective configuration.

Design/methodology/approach

Numerical solutions to the evolved transport equations are obtained using a finite volume method-based indigenous solver. The dimensionless parameters of Reynolds number (1 ≤ Re ≤ 500), Richardson number (0.1 ≤ Ri ≤ 100), Hartmann number (0 ≤ Ha ≤ 70) and magnetic field inclination angle (0° ≤ γ ≤ 180°) are considered. The solved variables generate both local and global variables after discretization using the semi-implicit method for pressure linked equations algorithm on nonuniform grids.

Findings

The study reveals that optimal heat transfer occurs when the heater is positioned at the right corner of the grooved cavity. Heat transfer augmentation ranges from 0.5% to 168.53% for Re = 50 to 300 compared to the bottom-heated case. The magnetic field’s orientation significantly influences the average heat transfer, initially rising and then declining with increasing inclination angle. Overall, this analysis underscores the effectiveness of heater positions in achieving superior thermal performance in a grooved channel cavity.

Research limitations/implications

This concept can be extended to explore enhanced thermal performance under various thermal boundary conditions, considering wall curvature effects, different geometry orientations and the presence of porous structures, either numerically or experimentally.

Practical implications

The findings are applicable across diverse fields, including biomedical systems, heat exchanging devices, electronic cooling systems, food processing, drying processes, crystallization, mixing processes and beyond.

Originality/value

This work provides a novel exploration of CuO-water nanofluid flow in mixed convection within a grooved channel cavity under the influence of an inclined magnetic field. The influence of different heater positions on thermomagnetic convection in such a cavity has not been extensively investigated before, contributing to the originality and value of this research.



中文翻译:

加热器位置对凹槽通道中 CuO-水纳米流体流动磁流体动力对流的影响

目的

本研究旨在利用 CuO-水纳米流体和倾斜磁场深入研究凹槽通道腔内的耦合混合对流热传输过程。腔体从底部接受等温加热,整个凹槽通道上的加热壁的位置发生变化。目的是评估加热器位置对热性能的影响并确定最有效的配置。

设计/方法论/途径

使用基于有限体积方法的本地求解器获得演化输运方程的数值解。考虑雷诺数(1≤Re≤500)、理查森数(0.1≤Ri≤100)、哈特曼数(0≤Ha≤70)和磁场倾角(0°≤γ≤180°)等无量纲参数。使用非均匀网格压力关联方程算法的半隐式方法离散化后,求解的变量生成局部变量和全局变量。

发现

研究表明,当加热器位于凹槽腔的右角时,会出现最佳的传热效果。与底部加热情况相比,当 Re = 50 至 300 时,传热增强范围为 0.5% 至 168.53%。磁场的方向显着影响平均传热,随着倾斜角的增加,磁场的方向首先上升,然后下降。总体而言,该分析强调了加热器位置在凹槽通道腔中实现卓越热性能的有效性。

研究局限性/影响

这个概念可以扩展到探索各种热边界条件下增强的热性能,考虑壁曲率效应、不同的几何方向和多孔结构的存在,无论是数值还是实验。

实际影响

这些发现适用于不同领域,包括生物医学系统、热交换装置、电子冷却系统、食品加工、干燥过程、结晶、混合过程等。

原创性/价值

这项工作为倾斜磁场影响下凹槽通道腔内混合对流的 CuO-水纳米流体流动提供了新颖的探索。不同加热器位置对此类腔体中热磁对流的影响此前尚未得到广泛研究,这有助于本研究的原创性和价值。

更新日期:2024-01-23
down
wechat
bug