当前位置: X-MOL 学术Geology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Holocene gigascale rock avalanches in Vaigat strait, West Greenland—Implications for geohazard
Geology ( IF 5.8 ) Pub Date : 2024-02-01 , DOI: 10.1130/g51234.1
Kristian Svennevig 1 , Matthew J. Owen 1, 2 , Michele Citterio 1 , Tove Nielsen 1 , Salik Rosing 1 , Jan Harff 3, 4 , Rudolf Endler 3 , Mathieu Morlighem 5 , Eric Rignot 6, 7
Affiliation  

Rock avalanche–triggered displacement waves (also termed tsunamis) have recently occurred in Greenland and Alaska, and they illustrate the presence of such hazards in polar regions. To improve understanding of the magnitude of this hazard for these areas, we investigated gigascale subaerial rock avalanches impacting a partially confined water body within the Vaigat strait (western Greenland). We present a new combined subaerial to subaqueous digital elevation model, alongside a new compilation of seismic data, which revealed nine deglacial to Holocene rock avalanche complexes that are between one and two orders of magnitude larger than nearby historical rock avalanches. The three largest complexes have deposit thicknesses up to 300 m, runout distances reaching 19 km, and best-estimate volumes from 1.7 to 8.4 km3. Based on the morphology and the volume–angle of reach relations, it is likely that each complex represents a single or few events, thus making them among the largest displacement wave–generating subaerial to submarine rock avalanches on Earth. We estimated displacement wave magnitude up to 280 m on the opposite shore. The ages of the deposits are poorly constrained but the main rock avalanche activity is referable to early Holocene times. With significant climatic changes predicted in the Arctic, we recommend that hazard assessments account for events not only from the historical record but also those from the recent geological past.In a warming climate, landslide occurrence is projected to increase in the Arctic (IPCC, 2019). Recent landslides in Alaska in 2015, Chile in 2007, and Greenland in 1952, 2000, and 2017 have demonstrated the hazard (Dahl-Jensen et al., 2004; Sepúlveda et al., 2010; Higman et al., 2018; Svennevig et al., 2020, 2023). These events involved high-velocity subaerial rock avalanches (sensu Hungr et al., 2014; Hermanns et al., 2021), which generated large waves via displacement of water as they impacted the sea. Displacement waves are also called tsunamis (Hermanns et al., 2013).To better understand the postglacial occurrence and magnitude of rock avalanches within high-latitude regions, we examined the geomorphological landslide record of the Vaigat strait and compared it to historic accounts previously used as “worst-case scenarios” (Dahl-Jensen et al., 2004). We did this by using a new digital elevation model (DEM) compilation of high-resolution topographic and bathymetric data alongside seismic reflection data and onshore observations. The SPLASH formula was then used to estimate displacement wave runup (Oppikofer et al., 2018).On the west coast of Greenland, located between Disko island (Qeqertarsuaq) and the Nuussuaq peninsula (Fig. 1), the Vaigat strait (Sullorsuaq) consists of a 2600-m-deep, steep-sided glacial valley ~110 km long and 15–30 km wide. The valley floor is below the present-day sea level, forming a 10–25-km-wide strait down to 600 m water depth. The bedrock geology consists of the Nuussuaq Basin, which is composed of Cretaceous–Paleocene mudstones and poorly lithified sandstones overlain by extensive Paleogene volcanic rocks and intruded by associated sills and dikes (Chalmers and Pulvertaft, 2001). The strait was filled with ice during Quaternary glaciations and deglaciated between 12 and 10 ka (Weidick and Bennike, 2007; Hogan et al., 2012). Numerous nonspecific landslide deposits have been identified during previous onshore geological mapping (Pedersen et al., 2001, 2007). Furthermore, the area has previously been identified as a landslide “hotspot,” with numerous Holocene landslide deposits mapped and landslide displacement waves observed in 1952 CE and 2000 CE (Dahl-Jensen et al., 2004; Svennevig, 2019; Svennevig et al., 2023).We based our geomorphological interpretations on a new DEM compilation (~10 m resolution onshore and 25 m offshore), which, alongside seismic data and limited onshore fieldwork, provided an overview of gigascale landslides in the study area. The Supplemental Material1 provides further details on these data sets and seismic facies interpretation.We calculated landslide volumes via methods based on geometrical estimation of the onshore rockslide scarp volume, as well as of the subaqueous deposits, and we discuss these methods in the Supplemental Material. Estimated displacement wave height was calculated using the SPLASH formula (Table 1; Table S3; Oppikofer et al., 2018).Based on DEM observations of long runout, a blocky/hummocky carapace, and a large volume, along with geophysical facies indicative of mass-movement deposits (chaotic to transparent convex to ponded unit geometry) in the seismic and Parasound data, we identified nine complexes of rock avalanches in Vaigat (Fig. 1; Fig. S1; sensu Hungr et al., 2014). As we do not know how many individual rock avalanches comprise each landform, we term them rock avalanche complexes. Here, we present a brief discussion of the largest three, named the Ivissussat, Uppalluk, and Ujarasussuk rock avalanche complexes (Fig. 1). Key geometric parameters from these complexes are shown in Table 1 and Table S3.The Ivissussat complex covers an area of 85 km2, with a total length of 13.6 km and maximum width of 9.1 km. The source area is in the volcanic and sedimentary bedrock succession on the mountain of Ivissussat Qaqqaat, where the head scarp is situated at an elevation of ~1790 m. A maximum water depth of 546 m was recorded at the toe of the deposit (Fig. 1E). The deposit morphology consists of hummocks, blocks, and instances of smoother lobate landforms. Individual blocks have lateral dimensions up to 1 km, relief of ~100 m, and flank gradients of 36° (Fig. 1C). Further, more than 50 isolated hummocks were observed with diameters of 100–300 m and vertical relief up to 100 m.Located 5 km farther southeast, the Uppalluk complex covers 123 km2, with a total length of 18.5 km and maximum width of 9.7 km (Fig. 1C). The head-scarp elevation is ~1580 m, and the bedrock of the source area consists of the same volcanic and sedimentary succession as for the Ivissussat complex (Fig. 1E). Water depth at the toe is 526 m. As with the Ivissussat complex, the morphology is characterized by numerous blocks and hummocks with lateral dimensions up to 300 m and vertical relief commonly between 50 and 100 m. The deposits at Uppalluk also display indications of marine sediment deformation, such as in front of the 2.5-km-wide “lobe 1” at the toe of the slide (Fig. 1E).The Ujarasussuk complex, located on the northern Disko coast, is the largest in the study area, affecting an area of 133 km2, with a total length of 19.0 km and maximum width of 9.6 km (Fig. 1D). The clear arcuate rockslide scar extends from the basalt cliff at 1120 m through the sedimentary succession into the offshore area (Fig. 1F). Water depth at the toe is 523 m. Its morphology is distinct from the two other complexes, with more clearly defined offshore lobes (n = 5; see Fig. 1F; Table S3). Surrounding the distal part of the largest lobe, there are numerous isolated hummocks (n = 159), some of which are extremely large with lateral dimensions reaching 900 m. Onshore, inside and adjacent to the rockslide scar, there are several blocks of basalt of the same dimension and morphology as the offshore hummocks, and these show evidence of rotation during slide movement (Figs. 1F and 2C).Best-estimate volumes for the marine complex deposits are 1.7 km3 for Ivissussat, 5.2 km3 for Uppalluk, and 8.4 km3 for Ujarasussuk (Table 1). The different methods used to calculate volumes yielded different results, as discussed in the Supplemental Material and shown in Table S3.Based on the morphologies described above, along with a comparison to subaqueous landslide deposit morphologies elsewhere, we interpret these features as subaerially sourced rock avalanche complexes (e.g., Day et al., 2015; Owen et al., 2018; Hughes et al., 2021; see facies interpretation in Table S2). Considering the regional geology and the presence of blocks of volcanic rock of similar morphology on the coastal slope, it is probable that some of the hummocks with high vertical to lateral dimension ratios and steep sides are large blocks of volcanic rock transported >15 km in a rock avalanche (Figs. 1E, 1F, and 2C; Table S2). For example, “hummock 1” of the Ujarasussuk complex is 500 m wide (0.08 km3 volume) and is located 17 km from the source, >3 km distance up the facing submarine slope (Figs. 1F and 3A). Similar-magnitude processes have been suggested for the giant Flims rockslide (Calhoun et al., 2015). The blocks with low vertical to lateral dimension ratios visible in the complexes at Ivissussat and Uppalluk have the appearance of secondary translational seabed failures (Canals et al., 2004; Hermanns et al., 2014). The more clearly defined, smooth-surfaced, convex-up lobes (e.g., Ujarasussuk lobes 1 and 2; Figs. 1F and 2B) are interpreted as finer-grained debrites. These were likely sourced from the poorly lithified Cretaceous–Paleogene clastic sediments onshore stratigraphically below the volcanic succession.An examination of the angle of reach–volume relationship of the rock avalanche complexes compared with a reference data set from Hermanns et al. (2021) indicated that each rock avalanche deposit could have resulted from a single large-magnitude event or a few events with individual minimum volumes of 0.1–1 km3 (Fig. 3B). Higher-resolution data are required to determine the potential number of events in each complex.However, the DEM provided some evidence of multiple events (i.e., lobes at Ujarasussuk; Fig. 1F), and the historical record of landslides observed in Vaigat post–1952 CE demonstrates that, to some degree, the complexes are formed from several events. Furthermore, Parasound data from the Ivissussat complex (Fig. 2A) showed evidence of landslide activity below, within, and above a parallel-bedded unit, which is known to represent deglacial to Holocene sediments (Hogan et al., 2012). Evidence of multiple events was also seen inside individual landslide units in the seismic sections (Figs. 2A and 2B). This demonstrates that at least the Ivissussat complex has experienced minor activity in recent times. The main deposit is, however, at the base of deglacial to Holocene sediments leading us to conclude that the main phase of rock avalanche activity is in early Holocene times. A similar pattern has been observed in Norwegian fjords (Böhme et al., 2015). The absolute ages of the giant rock avalanches in Vaigat remains a topic of further investigation.The large volumes and blocks along with the high energy necessary to produce the long runouts point to a significant displacement wave potential for the rock avalanches complexes. If the rock avalanche complexes were single rock avalanche events, then they could have produced waves with 160–280 m runup on the opposite shore of Vaigat (Table 1; following the equation of Oppikofer et al., 2018). Allowing for formation of the complexes by multiple events, they are still significantly larger than recent rock avalanches that produced displacement waves at high latitudes (Table S3; Fig. 3). By way of reference, the Paatuut landslide in 2000 CE, with a volume of 0.03 km3, generated a displacement wave with a nearfield runup of 50 m (Dahl-Jensen et al., 2004). This recent event is two orders of magnitude smaller than the individual lobe 1 of 3.3 km3 at the Ujarasussuk complex (Table S3).While there are larger known landslides associated with active volcanoes as well as other cubic-kilometer-scale subaerial rock avalanches (Korup et al., 2007; Penna et al., 2011), the rock avalanche complexes in Vaigat described here are among the largest on Earth and had the potential to generate extremely large displacement waves.From a hazard perspective, a key question is whether events of similar large magnitude to those of the past are likely to occur in the future, especially given that future warming is projected to exceed earlier Holocene fluctuations (Marcott et al., 2013). Mechanisms for preconditioning rock slope failures in this time interval (<3 ka after deglaciation) elsewhere have been suggested to be glacial debuttressing, increased seismic activity caused by isostatic uplift, and rapidly changing climate conditions (Ballantyne et al., 2014; Böhme et al., 2015; Sæmundsson et al., 2021). Potential preconditioning factors for the rock avalanche complexes in Vaigat remain unknown. Two recent, and order-of-magnitude smaller, landslides in Vaigat (Fig. 1B) led Svennevig et al. (2022, 2023) to conclude that they were preconditioned by permafrost degradation and that destabilizing effects of warming permafrost in this region may have penetrated >80 m inside the slopes. However, whether such processes played a role in the gigascale rock avalanche complexes and whether the present warming can affect larger slope areas in the near future remain topics of further study.Nevertheless, given the rate of climatic change the polar regions are experiencing because of accelerating global warming (IPCC, 2019), when assessing the threat from landslide displacement waves at high latitudes, we believe it is important to consider events not only from the short historical record, but also the Holocene geological record. When society overlooks the geological record of events, the hazards that we face are severely underestimated. Examples of this are shown by the identification of tsunami lag deposits of Holocene age on the Sendai Plain, Japan, and the discovery of submarine landslides of late Holocene age in the western North Atlantic, both of which shorten the estimated return period of high-magnitude events (Goto et al., 2011; Normandeau et al., 2019).We documented rock avalanches of deglacial to Holocene age that caused displacement waves in Vaigat, Greenland, of which individual components are at least an order of magnitude larger than those observed historically. Though further work is required to constrain age and preconditioning factors, these rock avalanches are a vital consideration for this type of hazard assessment in high-latitude regions. We suggest that they show the need to reassess this type of hazard in this and in similar regions, especially in the light of the warming climate.The governments of Denmark and Greenland funded the “Study of the risk for serious landslides in Greenland 2019–2022,” for which the original technical work was undertaken. The National Aeronautics and Space Administration (NASA) Oceans Melting Greenland (OMG) project provided vital bathymetry data, and the German Science Foundation (DFG) funded the expedition MSM05/03, during which Parasound data and further bathymetric data were acquired. We are grateful to Louise Mary Vick, Michael Clare, Mauro Soldati, Marten Geertsema, Jeff Coe, and two anonymous reviewers, whose constructive reviews significantly improved this paper.

中文翻译:

西格陵兰瓦伊加特海峡全新世千兆级岩崩——对地质灾害的影响

最近在格陵兰岛和阿拉斯加发生了由岩崩引发的位移波(也称为海啸),这说明极地地区也存在此类危险。为了更好地了解这些地区的这种危险的严重程度,我们调查了影响瓦伊加特海峡(格陵兰岛西部)部分封闭水体的千兆级地下岩崩。我们提出了一种新的组合式地面到水下数字高程模型,以及新的地震数据汇编,揭示了九个冰消期到全新世岩石雪崩复合体,这些复合体比附近历史岩石雪崩大一到两个数量级。三个最大的复合体的沉积厚度达 300 m,跳动距离达 19 km,最佳估计体积为 1.7 至 8.4 km3。根据形态和体积-到达角关系,每个复合体很可能代表一个或几个事件,从而使它们成为地球上最大的位移波产生的地面到海底岩石崩塌之一。我们估计对岸位移波震级高达 280 m。沉积物的年龄很难确定,但主要的岩崩活动可追溯到全新世早期。由于预测北极将出现重大气候变化,我们建议灾害评估不仅要考虑历史记录中的事件,还要考虑最近地质历史中的事件。在气候变暖的情况下,预计北极地区滑坡的发生将会增加(IPCC,2019) )。最近阿拉斯加 2015 年、智利 2007 年以及格陵兰岛 1952 年、2000 年和 2017 年发生的山体滑坡已经证明了这种危险(Dahl-Jensen 等人,2004 年;Sepúlveda 等人,2010 年;Higman 等人,2018 年;Svennevig 等人)等,2020、2023)。这些事件涉及高速地下岩崩(sensu Hungr 等人,2014 年;Hermanns 等人,2021 年),当水冲击海洋时,会通过水的位移产生巨大的波浪。位移波也称为海啸(Hermanns et al., 2013)。为了更好地了解高纬度地区冰期后岩石崩塌的发生和程度,我们检查了瓦伊加特海峡的地貌滑坡记录,并将其与以前使用的历史记录进行了比较为“最坏情况”(Dahl-Jensen 等,2004)。我们通过使用新的数字高程模型 (DEM) 来实现这一目标,该模型将高分辨率地形和测深数据以及地震反射数据和陆上观测数据进行编译。然后使用SPLASH公式来估计位移波上升(Oppikofer等,2018)。在格陵兰岛西海岸,位于迪斯科岛(Qeqertarsuaq)和努苏苏阿克半岛(图1)之间的瓦伊加特海峡(Sullorsuaq)由深 2600 米、陡峭的冰川山谷组成,长约 110 公里,宽 15-30 公里。谷底低于现今海平面,形成宽10-25公里、水深600米的海峡。基岩地质由努苏瓦克盆地组成,该盆地由白垩纪-古新世泥岩和低石化砂岩组成,上面覆盖着广泛的古近纪火山岩,并被相关的岩床和岩脉侵入(Chalmers 和 Pulvertaft,2001)。第四纪冰川作用期间,海峡充满冰,并在 12 至 10 ka 之间消融(Weidick 和 Bennike,2007;Hogan 等,2012)。在之前的陆上地质测绘中已经发现了许多非特异性滑坡沉积物(Pedersen 等人,2001 年,2007 年)。此外,该地区此前已被确定为山体滑坡“热点”,绘制了许多全新世山体滑坡沉积物图,并在公元 1952 年和 2000 年观测到山体滑坡位移波(Dahl-Jensen 等人,2004 年;Svennevig,2019 年;Svennevig 等人,2019 年)。 ,2023)。我们的地貌解释基于新的 DEM 编译(陆地分辨率约为 10 m,海上分辨率为 25 m),该编译连同地震数据和有限的陆上实地工作,提供了研究区域千兆级滑坡的概述。补充材料1提供了有关这些数据集和地震相解释的更多详细信息。我们通过基于陆上岩石滑坡陡坡体积以及水下沉积物的几何估计的方法计算了滑坡体积,并在补充材料中讨论了这些方法。使用 SPLASH 公式计算估计的位移波高(表 1;表 S3;Oppikofer 等,2018)。基于长跳动、块状/丘状甲壳和大体积的 DEM 观测,以及指示根据地震和 Parasound 数据中的质量运动沉积物(混沌到透明凸到积水单元几何形状),我们在 Vaigat 中识别出了九个岩崩复合体(图 1;图 S1;sensu Hungr 等,2014)。由于我们不知道每种地貌由多少个单独的岩石雪崩组成,因此我们将它们称为岩石雪崩复合体。在这里,我们简要讨论最大的三个岩石雪崩复合体,即 Ivissussat、Uppalluk 和 Ujarasussuk 岩石雪崩复合体(图 1)。这些综合体的关键几何参数如表1和表S3所示。Ivissussat综合体占地85平方公里,总长13.6公里,最大宽度9.1公里。源区位于 Ivissussat Qaqqaat 山的火山和沉积基岩序列中,头陡坡海拔约 1790 米。沉积物趾部记录的最大水深为 546 m(图 1E)。沉积物形态由小丘、块体和光滑的叶状地貌组成。单个块体的横向尺寸可达 1 km,地形约为 100 m,侧面坡度为 36°(图 1C)。此外,还观察到了50多个直径100-300 m的孤立小丘,垂直起伏高达100 m。乌帕鲁克杂岩体位于东南5公里处,面积123平方公里,总长18.5公里,最大宽度9.7公里。 (图1C)。头陡坡海拔约为 1580 m,源区基岩由与 Ivissussat 杂岩相同的火山和沉积序列组成(图 1E)。趾部水深526 m。与 Ivissussat 复合体一样,其形态特征为大量块体和山丘,横向尺寸可达 300 m,垂直起伏通常在 50 至 100 m 之间。Uppalluk 的沉积物还显示出海洋沉积物变形的迹象,例如在滑坡趾部 2.5 公里宽的“1 号波瓣”前面(图 1E)。Ujarasussuk 复合体位于迪斯科海岸北部,是研究区最大的,影响面积133 km2,总长19.0 km,最大宽度9.6 km(图1D)。清晰的弓形滑坡疤痕从1120 m处的玄武岩悬崖穿过沉积层序延伸到近海区域(图1F)。趾部水深523 m。其形态与其他两个复合体不同,具有更清晰的离岸叶(n = 5;参见图 1F;表 S3)。在最大叶的远端周围,有许多孤立的小丘(n = 159),其中一些丘丘非常大,横向尺寸达到900 m。在陆地上,在岩石滑坡疤痕的内部和附近,有几块玄武岩块的尺寸和形态与海上小丘相同,这些玄武岩块显示了滑动过程中旋转的证据(图 1F 和 2C)。 Ivissussat 为 1.7 平方公里,Uppalluk 为 5.2 平方公里,Ujarasussuk 为 8.4 平方公里(表 1)。用于计算体积的不同方法产生了不同的结果,如补充材料中所述并如表 S3 所示。根据上述形态,并与其他地方的水下滑坡沉积物形态进行比较,我们将这些特征解释为来自地下的岩石雪崩复合体(例如,Day 等人,2015;Owen 等人,2018;Hughes 等人,2021;参见表 S2 中的相解释)。考虑到区域地质和沿海斜坡上存在类似形态的火山岩块,一些纵横向尺寸比高、边坡陡的小丘很可能是在一段时间内搬运>15公里的大火山岩块。岩石雪崩(图 1E、1F 和 2C;表 S2)。例如,Ujarasussuk 综合体的“1 号山丘”宽 500 m(体积 0.08 km3),距离源头 17 公里,距面对的海底斜坡 > 3 公里(图 1F 和 3A)。有人建议巨大的弗利姆斯岩崩也存在类似规模的过程(Calhoun 等人,2015 年)。在 Ivissussat 和 Uppalluk 的复合体中可见垂直与横向尺寸比较低的区块,具有二次平移海底破坏的外观(Canals 等人,2004 年;Hermanns 等人,2014 年)。轮廓更清晰、表面光滑、向上凸的瓣片(例如,Ujarasussuk 瓣片 1 和 2;图 1 和 2)。1F 和 2B) 被解释为更细粒的碎片。这些可能源自火山序列下方地层上岩石化不良的白垩纪-古近纪碎屑沉积物。与 Hermanns 等人的参考数据集相比,对岩石雪崩复合体的到达角与体积关系进行了检查。(2021)表明,每个岩石雪崩沉积物可能是由单个大规模事件或单个最小体积为 0.1-1 km3 的几个事件引起的(图 3B)。需要更高分辨率的数据来确定每个复合体中潜在的事件数量。然而,DEM 提供了多个事件的一些证据(即 Ujarasussuk 的裂片;图 1F),以及 Vaigat 后观察到的山体滑坡的历史记录。 1952 CE 表明,在某种程度上,复合体是由几个事件形成的。此外,来自 Ivissussat 复合体的 Parasound 数据(图 2A)显示了平行层状单元下方、内部和上方滑坡活动的证据,该单元已知代表冰消期至全新世沉积物(Hogan 等,2012)。在地震剖面的各个滑坡单元内也发现了多次事件的证据(图2A和2B)。这表明至少 Ivissussat 复合体最近经历了轻微的活动。然而,主要沉积物位于冰消期至全新世沉积物的底部,这使我们得出结论,岩石雪崩活动的主要阶段是在全新世早期。在挪威峡湾也观察到了类似的模式(Böhme 等,2015)。Vaigat 巨型岩崩的绝对年龄仍然是进一步研究的主题。巨大的体积和块体以及产生长跳动所需的高能量表明岩崩复合体具有显着的位移波潜力。如果岩崩复合体是单个岩崩事件,那么它们可能会在 Vaigat 的对岸产生 160-280 m 上升的波浪(表 1;遵循 Oppikofer 等人,2018 年的方程)。考虑到复合体是由多个事件形成的,它们仍然比最近在高纬度地区产生位移波的岩石雪崩大得多(表S3;图3)。作为参考,公元 2000 年发生的 Paatuut 滑坡体积为 0.03 km3,产生了近场上升 50 m 的位移波(Dahl-Jensen 等人,2004 年)。最近的这次事件比 Ujarasussuk 复合体 3.3 km3 的单个波瓣 1 小两个数量级(表 S3)。虽然存在与活火山相关的较大已知山体滑坡以及其他立方千米规模的地下岩崩(Korup)等人,2007;Penna 等人,2011),此处描述的 Vaigat 岩石雪崩复合体是地球上最大的岩石雪崩复合体之一,有可能产生极大的位移波。从危险角度来看,一个关键问题是,未来是否可能发生与过去类似的大规模事件,特别是考虑到未来的变暖预计将超过全新世早期的波动(Marcott 等,2013)。其他地方在这个时间间隔(消融后 <3 ka)预处理岩石边坡破坏的机制被认为是冰川首次变形、均衡抬升引起的地震活动增加以及气候条件的快速变化(Ballantyne 等人,2014 年;Böhme 等人) .,2015;Sæmundsson 等人,2021)。瓦伊加特岩石雪崩复合体的潜在预处理因素仍然未知。最近 Vaigat 发生的两起规模较小的山体滑坡(图 1B)导致 Svennevig 等人。(2022,2023)得出的结论是,它们是由永久冻土退化预先调节的,并且该地区永久冻土变暖的不稳定影响可能已经渗透到斜坡内部> 80 m。然而,这些过程是否在千兆级岩石雪崩复合体中发挥了作用,以及当前的变暖是否会在不久的将来影响更大的斜坡区域,仍然是进一步研究的主题。尽管如此,考虑到极地地区正在经历气候变化的速度,因为气候变化加速全球变暖(IPCC,2019),在评估高纬度滑坡位移波的威胁时,我们认为不仅要考虑短期历史记录中的事件,还要考虑全新世地质记录中的事件,这一点很重要。当社会忽视事件的地质记录时,我们面临的危险就会被严重低估。日本仙台平原全新世海啸滞后沉积物的识别和北大西洋西部全新世晚期海底滑坡的发现就证明了这一点,这两者都缩短了高强度的预计重现期。事件(Goto 等人,2011 年;Normandeau 等人,2019 年)。我们记录了冰消期至全新世时期的岩崩,这些岩崩在格陵兰岛 Vaigat 引起了位移波,其中各个分量至少比观测到的大一个数量级从历史上看。尽管需要进一步的工作来限制年龄和预处理因素,但这些岩石雪崩是高纬度地区此类灾害评估的重要考虑因素。我们建议他们表明有必要重新评估该地区和类似地区的此类灾害,特别是考虑到气候变暖。丹麦和格陵兰岛政府资助了“2019-2022年格陵兰岛严重山体滑坡风险研究” ”,为此进行了原始技术工作。美国国家航空航天局 (NASA) 格陵兰岛融化 (OMG) 项目提供了重要的测深数据,德国科学基金会 (DFG) 资助了 MSM05/03 次探险,在此期间获取了 Parasound 数据和进一步的测深数据。我们感谢路易丝·玛丽·维克、迈克尔·克莱尔、毛罗·索尔达蒂、
更新日期:2024-01-30
down
wechat
bug