当前位置: X-MOL 学术Geology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geochemical mapping of lithospheric architecture disproves Archean terrane accretion in the Yilgarn craton
Geology ( IF 5.8 ) Pub Date : 2024-02-01 , DOI: 10.1130/g51707.1
R.H. Smithies 1, 2 , K. Gessner 1 , Y. Lu 1, 3 , C.L. Kirkland 2 , T. Ivanic 1 , J.R. Lowrey 1 , D.C. Champion 4 , J. Sapkota 1 , Q. Masurel 3 , N. Thébaud 3 , R. Quentin de Gromard 1
Affiliation  

The basement of Mesoarchean to Neoarchean greenstone basins in the Yilgarn craton is composed of fragments of evolved crust up to 3.7 Ga old. New cratonwide geochemical and isotopic data with unparalleled spatial resolution image a NE- to ENE-trending architecture in pre–2.73 Ga crust. These trends cannot be reconciled with plate-tectonic models, as they persist across younger NNW-striking structural fabrics, including a proposed suture previously interpreted to result from exotic terrane accretion. Our results suggest that, in spite of their substantial strike length, the NNW-trending structures have limited horizontal displacement and, although important for understanding regional geology, may be a geodynamically insignificant overprint of the primary ENE-trending architecture. We propose that these greenstone provinces or belts include individual basins formed in rifts with location, size, and orientation influenced by the interaction between basement fragments and regional crustal extension.The geological history of the Yilgarn craton in Western Australia dates back to at least 4.37 Ga (Wilde et al., 2001), with preserved crustal fragments as old as 3.7 Ga (e.g. Ivanic et al., 2013), and preserves structural and geochemical evidence interpreted as being consistent with subduction processes at several stages. Old (>3.0 Ga) crust of the Narryer terrane is in contact with 3.0–2.6 Ga crust of the Youanmi terrane (YT; Fig. 1) along an interpreted NE- to ENE-striking suture marking the ca. 2.74 Ga amalgamation of the two terranes (Myers, 1995). Between 2.95 and 2.73 Ga, there is also geochemical evidence for melting of metasomatically enriched mantle sources similar to those found at modern subduction zones (Wyman and Kerrich, 2012; Smithies et al., 2018; Lowrey et al., 2019; Mole et al., 2019). NNW-trending structures such as the Ida fault, which separates the Eastern Goldfields superterrane (EGST) from the YT, are also presented as an exemplar that modern-style plate-tectonic processes were active by ca. 2.7 Ga (Krapěz and Barley, 2008; Czarnota et al., 2010). The history of the craton at this stage is widely considered to reflect E-W convergence and accretion of exotic “terranes” separated by translithospheric structures, typical of modern convergent plate margins, with a prominent regional (NNW) lithotectonic trend (e.g., Krapěz and Barley, 2008; Czarnota et al., 2010). In contrast to this view, other studies have suggested that the EGST represents an infilled rift that developed over continuous YT basement (Pawley et al., 2012; Mole et al., 2019; Masurel et al., 2022).Much of the Yilgarn craton lies under cover, so distinctions between crustal fragments have largely relied on interpretations of geophysical data, mainly gravity and aeromagnetics, which are biased toward imaging upper-crustal NNW trends. However, using a large geochemical and isotope (Nd and Hf) data set, we identified regional variations in the composition of granite source regions that map an earlier cratonwide NE- to ENE-trending lithospheric architecture that remains recognizable despite the overprinting NNW-striking structures.Our cratonwide granite data set included 5157 whole-rock geochemical samples (Fig. 1B), 485 of which were dated mainly by secondary ion mass spectrometry (SIMS) zircon U-Pb geochronology, 830 of which have accompanying whole-rock Sm-Nd isotope data, and 302 of which have zircon Lu-Hf isotope data (see Tables S1–S3 and Figure S1 in the Supplementary Material1). All samples were classified according to the geochemical groups recognized by Champion and Sheraton (1997) and Champion and Cassidy (2007) (see Supplementary Material), as outlined below.High-Ca granites are broadly tonalite-trondhjemite-granodiorite (TTG) series and include high-Sr/Y (>40) and low-Sr/Y (<40) types, each separated into strongly sodic (K2O/Na2O <0.6), sodic (K2O/Na2O = 0.6–1), and rare potassic (K2O/Na2O >1) types. These granites mainly reflect melting of hydrated mafic crust (amphibolite), although some probably also had a direct large ion lithophile element (LILE)–enriched mantle source component (Johnson et al., 2017; Smithies et al., 2019).Low-Ca granites are typically potassic (K2O/Na2O mainly >1) and enriched in incompatible trace elements, reflecting a highly inhomogeneous crustal source. One subtype (low-Ca [high-Ti] granites) has elevated TiO2 and P2O5 concentrations and zircon saturation temperatures up to 960 °C (Watson and Harrison, 1983).High field strength element (HFSE)–rich granites are commonly hornblende-bearing, Fe-rich granites lying on a trend consistent with a strongly fractionated tholeiitic (dominantly mantle-derived) magma.Mafic granites are hornblende-rich monzodiorite, diorite, and granodiorite and are dominantly sanukitoids derived from a metasomatized peridotitic source component (Smithies et al., 2019).Syenites are spatially and temporally closely associated with sanukitoids and have similar Sm-Nd isotope (ɛNd mostly 0 to +3) and trace-element compositions (Fig. S2), suggesting a genetic relationship (Smithies et al., 2023).The Sm-Nd isotopic composition of most sanukitoids, syenites, HFSE-rich granites, and many strongly sodic high-Ca (high-Sr/Y) granites is more radiogenic (i.e., juvenile) than bulk earth, with initial ɛNd values up to +4, reflecting a direct mantle source component. Other granite groups are less radiogenic (mainly initial ɛNd <0; Fig. S2), reflecting melting of predominantly crustal sources.Except for areas in the Narryer terrane and a few other localities in the northern YT, the crystallization ages for ~70% of samples lie between 2.75 Ga and 2.65 Ga (Fig. 1C), irrespective of granite classification. Thus, our granite data set is a reasonable cratonwide reflection of a ca. 2.7 Ga time slice. Spatial patterns in compositional variables show a range of apparent trends, some persisting over multiple geochemical and isotopic data sets. Trends that formed prior to ca. 2.7 Ga are understandably erratic and commonly masked by the dominant ca. 2.7 Ga NNW structural trends. Nevertheless, a series of NE-ENE trends is preserved in the spatial distribution of compositional proxies for the evolution of Archean felsic crust, including Nd- and Hf-isotopic ratios (e.g., Champion and Cassidy, 2007; Mole et al., 2019) and Sr/Y and Gd/Yb ratios (Fig. 2). These trends are independent of contouring or interpolation methods (Fig. S3). Differences in Sr/Y and Gd/Yb can be proxies for regional variations in composition and residual mineralogy (e.g., Moyen, 2009) of granite source regions during crustal evolution. In our data set, NE-ENE and strong NNW trends were both observed, but consideration solely of rocks older than ca. 2.7 Ga (Fig. 3) eliminated any suggestion of a NNW structural trend, while NE-ENE trends remained (Fig. 3C).High-Sr/Y granites, and, in particular, strongly sodic high-Ca (high-Sr/Y) granites, are concentrated in the northern part of the craton and most notably in the YT, into an ENE-trending “southern high-Sr/Y zone” (SHZ; Fig. 2C). A similar pattern is seen on a map contoured for Gd/Yb (Fig. 2D). Statistical modeling of point alignments (Hammer, 2009) suggests that trend orientations for all samples with Sr/Y >40 or Gd/Yb >4.5 are not normally distributed but instead show a dominant NNW orientation, with a significant NE-ENE fabric associated with a shorter, discontinuous set of lineaments (Figs. 2C–2D).Regions of mainly low-Sr/Y and low-Gd/Yb granites tend to correspond with felsic crust with nonradiogenic (evolved) Sm-Nd and Lu-Hf isotope compositions, as shown by old two-stage depleted mantle model ages (TDM2; Fig. 2). The northwestern part of the YT is a discrete NE-ENE accumulation of strongly sodic high-Ca (high Sr/Y) granites (Fig. 2C), corresponding to the juvenile “Cue isotopic zone” imaged by isotope maps (Champion and Cassidy, 2007; Ivanic et al., 2013).Strongly sodic high-Ca (high-Sr/Y) granites tend to be more closely associated spatially and temporally with greenstone belts than do other granites, except for sanukitoids and syenites (Figs. 1 and 2), most of which also have Sr/Y >40. None of these granite types form major components in granite bodies distal to greenstone belts, which are dominated by crustal melts of low-Ca, or of less sodic high-Ca, granite composition (Fig. 1B).Low-Ca (high-Ti) granites are among the youngest granites (Fig. 1C). The main concentration forms a broad band within the western half of the YT that coincides with a region of felsic crust with TDM2 older than 3.3 Ga (Figs. 2A and 2B). This band of granite and old felsic basement is compartmentalized along NE-ENE trends. The granites themselves do not show NE-ENE fabrics, and so the spatial patterns in the granites probably mirror preexisting NE-ENE deformation trends and offsets in the distribution of their basement melt sources. Similar NE-ENE trends align with sharp gradients in Sm-Nd and Lu-Hf isotope maps and in regional granite geochemical data. In particular, they extend into the EGST as sharp NE-ENE–trending steps in the shape of the NNE-trending isotopic juvenile zone (Figs. 2A and 2B), orthogonal to the NNW-oriented structural grain. Mole et al. (2019) also noticed that the 2.7 Ga komatiite occurrences of the EGST appeared to be offset along similar NE-ENE–trending steps in the EGST isotope contours.Most sanukitoids, syenites, and HFSE-rich granites intrude into or are peripheral to greenstone belts along fault systems, which, by implication, are mantle-tapping structures, and in many cases, these fault systems are the structural control on late sedimentary basins and potentially also on the early basalt magmas forming the greenstone basins themselves (Smithies et al., 2022). These mantle-derived granites form regionally extensive NNW-trending belts, several of which abruptly terminate, in the southern EGST, against the ENE continuation of the northern boundary of the SHZ, which in this region also corresponds with one of the main NE-ENE steps in isotope contour maps (Figs. 2A and 2B).All isotope maps of the Yilgarn craton (Champion and Cassidy, 2007; Champion and Huston, 2016; Mole et al., 2019; Hartnady and Kirkland, 2022; Lu et al., 2022a, 2022b) identify the EGST as a region of anomalous juvenile felsic crust. Magmatism forming the greenstone belts and much of the granite of the EGST began after 2.73 Ga (e.g., Czarnota et al., 2010). Regional compositional data from older granites (Fig. 3) show no evidence for a distinct basement to the EGST, but they reveal broad ENE-trending compositional basement bands in Youanmi-aged crust across all but the westernmost part of the craton (Morris and Kirkland, 2014). Virtually the entire juvenile contribution to the felsic EGST crust was incorporated between 2.73 and 2.65 Ga into a basement isotopically similar to the YT. This contribution was largely via sanukitoid, syenite, and strongly sodic high-Ca (high-Sr/Y) magmatism in and around greenstone basins, and this alone accounts for the NNW-trending region of high-Sr/Y crust (Fig. 2). Low-Ca granites with εNd values >0 mainly lie close to EGST greenstones and probably reflect remelting of a “sanukitoid-infused” crustal source or of isotopically juvenile strongly sodic high-Ca (high-Sr/Y) granite. The strong spatial and temporal association of sanukitoid, syenite, and strongly sodic high-Ca (high-Sr/Y) magmatism with greenstone basins possibly reflects an overarching structural control on basin formation, and on intrusion pathways for both the mafic magmas forming the greenstone belts and for the later mantle lithosphere–derived sanukitoid and syenite. Associated high-Ca (high-Sr/Y) granites reflect either fractionated sanukitoid (Smithies et al., 2019) or deep crustal melts resulting from heat related to the ascent of greenstone-forming magmas, explaining why they are less common away from greenstone belts.Juvenile crust in the NE-trending Cue isotopic zone (Fig. 2) evolved between 2.82 Ga and 2.76 Ga (Ivanic et al., 2022) and has been attributed to back-arc development before the ca. 2.74 Ga inferred amalgamation of the Narryer and Youanmi terranes (Rowe et al., 2022). It includes 2.82–2.76 Ga mafic-intermediate stratigraphy with compositions reflecting a metasomatically enriched peridotite source and a compositional range typical of modern subduction initiation assemblages (Lowrey et al., 2019; Smithies et al., 2018). The juvenile isotopic signature is marked by 2.76–2.69 Ga sanukitoid and strongly sodic high-Ca (high-Sr/Y) granites.Although less distinct, the southern high-Sr/Y band also represents a NE-ENE accumulation of strongly sodic high-Ca (high-Sr/Y) granites and sanukitoids within a zone of slightly more juvenile felsic crust.The NE-ENE compositional architecture reflects variations in proxies for both composition and melting conditions in granite source regions, implicating deep NE-ENE–striking compositional domains. The local preservation of the NE-ENE trends in spite of transpressional deformation along NNW-oriented structures (Zibra et al., 2022) suggests that, although the strike length of these later fault zones is up to hundreds of kilometers in scale, displacements were relatively small. The preservation of the NE-ENE compositional domaining across the Yilgarn craton (Fig. 2) cannot be reconciled with the idea that the craton amalgamated via lateral E-W accretion of exotic terranes. The prominent NNW structural and isotopic trends marking the EGST are more consistent with development in a rift zone as a series of discrete greenstone basins forming an upper stratigraphic component of the YT, and surrounded and separated by granite that was emplaced dominantly coeval with or after greenstone formation.Based on the patterns in regional Lu-Hf isotope data sets, Mole et al. (2019) suggested that the Yilgarn craton basement is segmented into compositionally discrete blocks, a feature also demonstrated in our data. Although there is no evidence that the NE-ENE trends reflect structures that deform greenstone belts of the EGST, they clearly controlled the distribution of juvenile crust that evolved synchronously with the greenstones (Fig. 2). We suggest that the NE-ENE–trending architecture influenced the location, orientation, and evolution of both the EGST greenstone basins and the spatially related sanukitoid, syenite, and very sodic high-Ca (high-Sr/Y) magmas. The same is probably true of the NE-ENE trends that characterize the Cue isotopic zone and SHZ regions. Future work can test this hypothesis by investigating kinematic scenarios of basin formation that take into account progressive deformation and reactivation of the NE-ENE–trending architecture.Large data sets of geologically well-constrained geochemical, age, and isotopic data have been used to investigate the deep crustal geology of other Archean cratons (Mole et al., 2021; Harris et al., 2021; Vandenburg et al., 2023). The point of such exercises is not necessarily to challenge the role of modern-style arc/terrane accretion processes, although this appears to be the outcome so far. Such integrated data sets provide a powerful means of testing whether geodynamic models constructed largely from surface and near-surface data are consistent with deep crustal architecture, and for understanding the extent and geological reasons for any inconsistencies that might be detected.We show that, although once the basis of an E-W terrane accretion paradigm for the Yilgarn craton, the prominent NNW structural trends that dominate the EGST are instead more likely a late overprint on a continuous basement already characterized by an ancient NE-ENE–trending architecture, which itself was possibly at least partly a result of some form of local, incipient, subduction-like process. Greenstone belts in the EGST most likely developed in continental rift zones, and the evolution and locations of the individual basins were probably fundamentally influenced by early NE-ENE YT-basement architecture. The dominant NNW trends were not a direct or immediate product of exotic terrane accretion within the region of the Yilgarn craton, although they potentially, but not necessarily, might relate to plate-tectonics occurring elsewhere.Comments from Peter Cawood, two anonymous reviewers, and editor Urs Schaltegger were very helpful and are greatly appreciated. R.H. Smithies, K. Gessner, Y. Lu, J. Lowrey, T. Ivanic, J. Sapkota, and R. Quentin de Gromard publish with the permission of the Executive Director of the Geological Survey of Western Australia. We acknowledge funding from the Government of Western Australia Exploration Incentive Scheme.

中文翻译:

岩石圈结构的地球化学测绘反驳了 Yilgarn 克拉通太古代地体的增生

Yilgarn 克拉通中太古代到新太古代绿岩盆地的基底由 3.7 Ga 年龄的演化地壳碎片组成。新的克拉通范围地球化学和同位素数据具有无与伦比的空间分辨率,对 2.73 Ga 之前地壳中的 NE 到 ENE 趋势的结构进行了成像。这些趋势无法与板块构造模型相一致,因为它们持续存在于较年轻的北北西向构造结构中,包括先前被解释为异域地体增生造成的拟议缝合线。我们的研究结果表明,尽管走向长度相当长,但 NNW 走向的构造水平位移有限,尽管对于理解区域地质很重要,但可能是主要 ENE 走向构造的地球动力学上无关紧要的叠印。我们认为这些绿岩省或带包括在裂谷中形成的单个盆地,其位置、大小和方向受到基底碎片和区域地壳伸展之间相互作用的影响。西澳大利亚 Yilgarn 克拉通的地质历史至少可以追溯到 4.37 Ga (Wilde 等人,2001),保存了距今 3.7 Ga 的地壳碎片(例如 Ivanic 等人,2013),并保留了解释为与多个​​阶段的俯冲过程一致的结构和地球化学证据。Narryer 地体的旧 (>3.0 Ga) 地壳与 Youanmi 地体 (YT; 图 1) 的 3.0–2.6 Ga 地壳接触,沿着一条解释的 NE 到 ENE 走向的缝合线,标记了约 2.74 Ga 两个地体的合并(Myers,1995)。在 2.95 至 2.73 Ga 之间,也有地球化学证据表明交代富集的地幔源发生熔融,与现代俯冲带发现的类似(Wyman 和 Kerrich,2012;Smithies 等,2018;Lowrey 等,2019;Mole 等) .,2019)。NNW 走向的构造,例如将东部金矿区超地层 (EGST) 与 YT 分开的艾达断层,也被作为现代板块构造过程活跃于大约 10 年前的一个范例。2.7 Ga(Krapěz 和 Barley,2008 年;Czarnota 等人,2010 年)。这一阶段克拉通的历史被广泛认为反映了东西向的汇聚和被跨岩石圈结构分隔开的外来“地体”的增生,典型的现代汇聚板块边缘,具有显着的区域(NNW)岩石构造趋势(例如,Krapěz和Barley, 2008;Czarnota 等人,2010)。与这一观点相反,其他研究表明,EGST 代表了在连续的 YT 基底上发育的填充裂谷(Pawley 等人,2012 年;Mole 等人,2019 年;Masurel 等人,2022 年)。克拉通位于地下,因此地壳碎片之间的区别在很大程度上依赖于对地球物理数据的解释,主要是重力和航空磁学数据,这些数据偏向于对上地壳的 NNW 趋势进行成像。然而,使用大型地球化学和同位素(Nd 和 Hf)数据集,我们确定了花岗岩源区成分的区域差异,这些区域绘制了早期克拉通范围的 NE 至 ENE 趋势的岩石圈结构,尽管重叠了 NNW 走向的结构,但该结构仍然可识别。我们的克拉通范围花岗岩数据集包括 5157 个全岩石地球化学样本(图 1)。 1B),其中 485 个主要通过二次离子质谱(SIMS)锆石 U-Pb 地质年代学测年,其中 830 个具有伴随的全岩 Sm-Nd 同位素数据,其中 302 个具有锆石 Lu-Hf 同位素数据(见补充材料中的表 S1-S3 和图 S1)。所有样品均根据 Champion 和 Sheraton (1997) 以及 Champion 和 Cassidy (2007) 认可的地球化学组进行分类(参见补充材料),如下所述。高钙花岗岩广泛属于英云闪长岩-长辉长岩-花岗闪长岩 (TTG) 系列和包括高 Sr/Y (>40) 和低 Sr/Y (<40) 类型,每种类型又分为强钠离子 (K2O/Na2O <0.6)、钠离子 (K2O/Na2O = 0.6–1) 和稀钾离子 ( K2O/Na2O >1) 类型。这些花岗岩主要反映了水合镁铁质地壳(角闪岩)的熔融,尽管有些花岗岩可能还具有直接大离子亲石元素(LILE)富集的地幔源成分(Johnson等,2017;Smithies等,2019)。钙花岗岩通常是钾质的(K2O/Na2O 主要>1)并且富含不相容的微量元素,反映了高度不均匀的地壳来源。一种亚型(低钙 [高钛] 花岗岩)的 TiO2 和 P2O5 浓度较高,锆石饱和温度高达 960 °C(Watson 和 Harrison,1983)。高场强元素 (HFSE) 丰富的花岗岩通常是角闪石 -富含铁的花岗岩的走向与强烈分异的拉斑岩(主要来自地幔)岩浆一致。基性花岗岩是富含角闪石的二长闪长岩、闪长岩和花岗闪长岩,主要是源自交代橄榄岩源成分的赞努基岩(Smithies et al., 2019)。正长岩在空间和时间上与 sanukitoids 密切相关,并且具有相似的 Sm-Nd 同位素(ɛNd 主要为 0 至 +3)和微量元素组成(图 S2),表明存在遗传关系(Smithies 等,2019)。 ,2023)。大多数 sanukitoids、正长岩、富含 HFSE 的花岗岩和许多强钠质高钙(高 Sr/Y)花岗岩的 Sm-Nd 同位素组成比块状地球更具放射性(即幼年),初始ɛNd 值高达+4,反映了直接地幔源成分。其他花岗岩群的放射性成因较少(主要是初始 ɛNd <0;图 S2),反映了主要地壳来源的熔融。除了纳里尔地体区域和 YT 北部的其他一些地区外,结晶年龄约为 70%无论花岗岩分类如何,样品的含量都在 2.75 Ga 和 2.65 Ga 之间(图 1C)。因此,我们的花岗岩数据集是大约克拉通范围的合理反映。2.7 Ga 时间片。成分变量的空间模式显示出一系列明显的趋势,有些在多个地球化学和同位素数据集中持续存在。大约之前形成的趋势。2.7 Ga 的不稳定是可以理解的,并且通常被占主导地位的 ca 所掩盖。2.7 Ga NNW 构造趋势。尽管如此,太古代长英质地壳演化的成分代理的空间分布中保留了一系列NE-ENE趋势,包括Nd和Hf同位素比率(例如,Champion和Cassidy,2007;Mole等,2019) Sr/Y 和 Gd/Yb 比率(图 2)。这些趋势与轮廓或插值方法无关(图S3)。Sr/Y 和 Gd/Yb 的差异可以代表地壳演化过程中花岗岩源区成分和残余矿物学的区域变化(例如,Moyen,2009)。在我们的数据集中,都观察到了 NE-ENE 和强烈的 NNW 趋势,但仅考虑了年龄超过 ca 的岩石。2.7 Ga(图 3)消除了任何 NNW 构造趋势的暗示,而 NE-ENE 趋势仍然存在(图 3C)。高 Sr/Y 花岗岩,特别是强钠质高 Ca(高 Sr/ Y)花岗岩集中在克拉通北部,尤其是 YT,形成 ENE 走向的“南部高 Sr/Y 区”(SHZ;图 2C)。在 Gd/Yb 轮廓图上可以看到类似的图案(图 2D)。点对齐的统计模型(Hammer,2009)表明,Sr/Y > 40 或 Gd/Yb > 4.5 的所有样本的趋势方向不是正态分布,而是显示出主导的 NNW 方向,与显着的 NE-ENE 结构相关。一组较短、不连续的线状结构(图 2C-2D)。主要是低 Sr/Y 和低 Gd/Yb 花岗岩的区域往往与具有非放射性(演化)Sm-Nd 和 Lu-Hf 同位素组成的长英质地壳相对应,如旧的两阶段贫化地幔模型年龄所示(TDM2;图2)。YT 的西北部是一个离散的 NE-ENE 强钠质高钙(高 Sr/Y)花岗岩堆积体(图 2C),对应于同位素图(Champion 和 Cassidy, 2007; Ivanic et al., 2013). 强钠质高钙(高 Sr/Y)花岗岩比其他花岗岩在空间和时间上与绿岩带的联系更为密切,除了赞基特类和正长岩之外(图 1 和图 1)。 2),其中大多数Sr/Y也>40。这些花岗岩类型都不是绿岩带远端花岗岩体的主要成分,绿岩带主要由低钙或钠质高钙花岗岩成分的地壳熔体组成(图 1B)。低钙(高钛) )花岗岩是最年轻的花岗岩之一(图1C)。主要集中区在 YT 的西半部形成一条宽带,与 TDM2 年龄超过 3.3 Ga 的长英质地壳区域重合(图 2A 和 2B)。这条花岗岩带和古老的长英质基底沿着 NE-ENE 走向划分。花岗岩本身不显示 NE-ENE 结构,因此,花岗岩的空间模式可能反映了先前存在的 NE-ENE 变形趋势和基底熔体源分布的偏移。类似的 NE-ENE 趋势与 Sm-Nd 和 Lu-Hf 同位素图以及区域花岗岩地球化学数据中的急剧梯度一致。特别是,它们以 NNE 趋势同位素幼带形状的尖锐 NE-ENE 趋势台阶延伸到 EGST(图 2A 和 2B),与 NNW 取向的结构颗粒正交。摩尔等人。(2019) 还注意到,EGST 的 2.7 Ga 科马提岩矿点似乎沿着 EGST 同位素等值线中类似的 NE-ENE 趋势台阶偏移。大多数赞努吉特类、正长岩和富含 HFSE 的花岗岩侵入绿岩带或在绿岩带外围沿着断层系统,暗示着地幔构造,在许多情况下,这些断层系统是对晚期沉积盆地的结构控制,也可能是对形成绿岩盆地本身的早期玄武岩岩浆的控制(Smithies等人, 2022)。这些幔源花岗岩形成区域广泛的 NNW 走向带,其中一些带在 EGST 南部突然终止,与 SHZ 北部边界的 ENE 延续相对应,该区域也对应于主要的 NE-ENE 走向之一同位素等值线图中的步骤(图2A和图2B)。Yilgarn克拉通的所有同位素图(Champion和Cassidy,2007;Champion和Huston,2016;Mole等,2019;Hartnady和Kirkland,2022;Lu等。 ,2022a,2022b)将 EGST 确定为异常幼年长英质地壳区域。形成绿岩带和 EGST 大部分花岗岩的岩浆作用在 2.73 Ga 之后开始(例如,Czarnota 等,2010)。来自较老花岗岩的区域成分数据(图 3)没有显示 EGST 存在明显基底的证据,但它们揭示了尤安米时代地壳中除克拉通最西端以外的所有区域中广泛的 ENE 趋势成分基底带(Morris 和 Kirkland) ,2014)。事实上,长英质 EGST 地壳的整个幼体贡献都被纳入了 2.73 至 2.65 Ga 的同位素与 YT 相似的基底中。这种贡献主要是通过绿岩盆地及其周围的桑基特类、正长岩和强钠质高钙(高 Sr/Y)岩浆作用,仅此一点就解释了高 Sr/Y 地壳的 NNW 走向区域(图 2) )。εNd 值 >0 的低钙花岗岩主要位于 EGST 绿岩附近,可能反映了“注入 sanukitoid”的地壳源或同位素幼年强钠质高钙(高 Sr/Y)花岗岩的重熔。赞努吉特类、正长岩和强钠质高钙(高 Sr/Y)岩浆活动与绿岩盆地的强烈时空关联可能反映了对盆地形成以及形成绿岩的镁铁质岩浆的侵入路径的总体构造控制。岩带和后来的地幔岩石圈衍生的桑努吉特岩和正长岩。相关的高钙(高 Sr/Y)花岗岩反映了分馏的 sanukitoid (Smithies 等人,2019)或由与形成绿岩的岩浆上升相关的热量产生的深部地壳熔融物,这解释了为什么它们在远离绿岩的地方不太常见NE 走向的 Cue 同位素带(图 2)中的幼年地壳在 2.82 Ga 和 2.76 Ga 之间演化(Ivanic 等人,2022),并且被归因于大约在 2.82 Ga 和 2.76 Ga 之前的弧后发育。2.74 Ga 推断 Narryer 和 Youanmi 地体的合并(Rowe 等人,2022)。它包括 2.82–2.76 Ga 镁铁质-中质地层,其成分反映了交代富集的橄榄岩源和现代俯冲起始组合的典型成分范围(Lowrey 等,2019;Smithies 等,2018)。幼年同位素特征以 2.76–2.69 Ga sanukitoid 和强钠质高钙(高 Sr/Y)花岗岩为标志。虽然不太明显,但南部高 Sr/Y 带也代表了强钠质高钙的 NE-ENE 堆积。 -Ca(高 Sr/Y)花岗岩和 sanukitoids 位于稍年轻的长英质地壳区域内。NE-ENE 成分结构反映了花岗岩源区成分和熔化条件的代理变化,暗示了深部 NE-ENE 显着的构造组成域。尽管沿 NNW 向构造发生压变形,但 NE-ENE 趋势的局部保留表明,尽管这些后期断裂带的走向长度达到数百公里,但位移相对较小。Yilgarn 克拉通中 NE-ENE 成分域的保留(图 2)与克拉通通过外来地体的横向东西向增生而合并的观点不能相一致。标志着 EGST 的突出的 NNW 结构和同位素趋势与裂谷带的发育更为一致,裂谷带是一系列离散的绿岩盆地,形成 YT 的上部地层组成部分,并被花岗岩包围和分隔,花岗岩主要与绿岩同时或在绿岩之后基于区域 Lu-Hf 同位素数据集中的模式,Mole 等人。(2019)建议 Yilgarn 克拉通基底被分割成组成上离散的块,我们的数据也证明了这一特征。尽管没有证据表明NE-ENE趋势反映了使EGST绿岩带变形的结构,但它们明显控制了与绿岩同步演化的幼生地壳的分布(图2)。我们认为,NE-ENE 走向的构造影响了 EGST 绿岩盆地以及空间上相关的桑努吉特岩浆、正长岩和高钠高钙(高 Sr/Y)岩浆的位置、方向和演化。Cue 同位素带和 SHZ 区域的 NE-ENE 趋势可能也是如此。未来的工作可以通过研究盆地形成的运动学情景来检验这一假设,该运动学情景考虑了 NE-ENE 趋势结构的渐进变形和重新激活。地质良好约束的地球化学、年龄和同位素数据的大型数据集已被用于研究其他太古代克拉通的深部地壳地质(Mole 等,2021;Harris 等,2021;Vandenburg 等,2023)。此类练习的目的不一定是挑战现代弧/地体增生过程的作用,尽管到目前为止这似乎是结果。这种综合数据集提供了一种强大的手段来测试主要根据地表和近地表数据构建的地球动力学模型是否与深层地壳结构一致,并了解可能检测到的任何不一致的程度和地质原因。我们表明,尽管一旦成为 Yilgarn 克拉通东西向地体增生范式的基础,主导 EGST 的突出的 NNW 结构趋势反而更可能是连续基底上的晚期叠印,该基底已经以古老的 NE-ENE 趋势建筑为特征,其本身可能是至少部分是某种形式的局部、初期、类似俯冲过程的结果。EGST 中的绿岩带最有可能在大陆裂谷带发育,各个盆地的演化和位置可能从根本上受到早期 NE-ENE YT 基底构造的影响。主导的 NNW 趋势并不是 Yilgarn 克拉通区域内异国地体增生的直接或直接产物,尽管它们可能(但不一定)可能与其他地方发生的板块构造有关。两位匿名评论家 Peter Cawood 的评论和编辑 Urs Schaltegger 非常乐于助人,我们深表感谢。RH Smithies、K. Gessner、Y. Lu、J. Lowrey、T. Ivanic、J. Sapkota 和 R. Quentin de Gromard 经西澳大利亚地质调查局执行主任许可出版。我们感谢西澳大利亚州政府勘探激励计划的资助。尽管曾经是 Yilgarn 克拉通东西向地体增生范式的基础,但主导 EGST 的显着的 NNW 结构趋势反而更可能是连续基底上的晚期叠印,该基底已经以古老的 NE-ENE 趋势建筑为特征,其本身是可能至少部分是某种形式的局部、初期、类似俯冲过程的结果。EGST 中的绿岩带最有可能在大陆裂谷带发育,各个盆地的演化和位置可能从根本上受到早期 NE-ENE YT 基底构造的影响。主导的 NNW 趋势并不是 Yilgarn 克拉通区域内异国地体增生的直接或直接产物,尽管它们可能(但不一定)可能与其他地方发生的板块构造有关。两位匿名评论家 Peter Cawood 的评论和编辑 Urs Schaltegger 非常乐于助人,我们深表感谢。RH Smithies、K. Gessner、Y. Lu、J. Lowrey、T. Ivanic、J. Sapkota 和 R. Quentin de Gromard 经西澳大利亚地质调查局执行主任许可出版。我们感谢西澳大利亚州政府勘探激励计划的资助。尽管曾经是 Yilgarn 克拉通东西向地体增生范式的基础,但主导 EGST 的显着的 NNW 结构趋势反而更可能是连续基底上的晚期叠印,该基底已经以古老的 NE-ENE 趋势建筑为特征,其本身是可能至少部分是某种形式的局部、初期、类似俯冲过程的结果。EGST 中的绿岩带最有可能在大陆裂谷带发育,各个盆地的演化和位置可能从根本上受到早期 NE-ENE YT 基底构造的影响。主导的 NNW 趋势并不是 Yilgarn 克拉通区域内异国地体增生的直接或直接产物,尽管它们可能(但不一定)可能与其他地方发生的板块构造有关。两位匿名评论家 Peter Cawood 的评论和编辑 Urs Schaltegger 非常乐于助人,我们深表感谢。RH Smithies、K. Gessner、Y. Lu、J. Lowrey、T. Ivanic、J. Sapkota 和 R. Quentin de Gromard 经西澳大利亚地质调查局执行主任许可出版。我们感谢西澳大利亚州政府勘探激励计划的资助。
更新日期:2024-01-30
down
wechat
bug