当前位置: X-MOL 学术SIAM J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Methods and Analysis of Computing Quasiperiodic Systems
SIAM Journal on Numerical Analysis ( IF 2.9 ) Pub Date : 2024-02-01 , DOI: 10.1137/22m1524783
Kai Jiang 1 , Shifeng Li 1 , Pingwen Zhang 2
Affiliation  

SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 353-375, February 2024.
Abstract. Quasiperiodic systems are important space-filling ordered structures, without decay and translational invariance. How to solve quasiperiodic systems accurately and efficiently is a great challenge. A useful approach, the projection method (PM) [J. Comput. Phys., 256 (2014), pp. 428–440], has been proposed to compute quasiperiodic systems. Various studies have demonstrated that the PM is an accurate and efficient method to solve quasiperiodic systems. However, there is a lack of theoretical analysis of the PM. In this paper, we present a rigorous convergence analysis of the PM by establishing a mathematical framework of quasiperiodic functions and their high-dimensional periodic functions. We also give a theoretical analysis of the quasiperiodic spectral method (QSM) based on this framework. Results demonstrate that the PM and QSM both have exponential decay, and the QSM (PM) is a generalization of the periodic Fourier spectral (pseudospectral) method. Then, we analyze the computational complexity of the PM and QSM in calculating quasiperiodic systems. The PM can use a fast Fourier transform, while the QSM cannot. Moreover, we investigate the accuracy and efficiency of the PM, QSM, and periodic approximation method in solving the linear time-dependent quasiperiodic Schrödinger equation.
更新日期:2024-02-02
down
wechat
bug