当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and simulation of dynamic compression of Bulk Metallic Glasses at room and elevated temperatures using split Hopkinson pressure bar setup
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2024-02-17 , DOI: 10.1016/j.ijplas.2024.103915
Arun Kamble , Parag Tandaiya

This paper presents a modeling and simulation study of dynamic compression behavior of Bulk Metallic Glasses (BMGs) at room and elevated temperatures using the split Hopkinson pressure bar (SHPB) setup. The primary objective of this study is to develop and validate a constitutive model and simulation methodology capable of predicting the high strain rate response of BMGs at different temperatures. We propose a constitutive model for BMGs that accounts for the effects of high strain rates and elevated temperatures. We numerically implemented this model in ABAQUS/Explicit Finite Element Analysis software by writing a Vectorized User Material (VUMAT) subroutine. The methodology for modeling and simulation of dynamic compression of BMG specimens using the SHPB setup is developed. The present simulations are able to correctly predict the rate-independent response of (Vitreloy-1) BMG under dynamic compression at room and elevated temperatures. Furthermore, the present simulations are also able to correctly predict the negative strain rate sensitivity (SRS) of (Vitreloy-105) BMG at room temperature. Finally, the present simulations correctly predict that the failure stress of ZrCuNiAl BMG decreases with increasing temperature and exhibits a minimal positive SRS. The present study is the first successful attempt to model the mechanical response of various BMGs under dynamic compression and at room and elevated temperatures. In particular, the experimentally observed negative SRS in some BMGs has been successfully simulated. The present work has important implications for the design of next generation spacecraft shields that are based on BMGs for mitigating the effects of hypervelocity impacts from debris in space.

中文翻译:

使用分体式霍普金森压力杆装置对室温和高温下的块状金属玻璃动态压缩进行建模和仿真

本文提出了使用分体式霍普金森压力棒 (SHPB) 设置对块状金属玻璃 (BMG) 在室温和高温下的动态压缩行为进行的建模和模拟研究。本研究的主要目的是开发和验证能够预测 BMG 在不同温度下的高应变率响应的本构模型和模拟方法。我们提出了 BMG 的本构模型,该模型考虑了高应变率和高温的影响。我们通过编写矢量化用户材料 (VUMAT) 子程序在 ABAQUS/显式有限元分析软件中以数值方式实现了该模型。开发了使用 SHPB 设置对 BMG 样本动态压缩进行建模和模拟的方法。目前的模拟能够正确预测 (Vitreloy-1) BMG 在室温和高温动态压缩下的与速率无关的响应。此外,本模拟还能够正确预测 (Vitreloy-105) BMG 在室温下的负应变率敏感性 (SRS)。最后,本模拟正确预测 ZrCuNiAl BMG 的失效应力随着温度的升高而降低,并表现出最小的正 SRS。本研究是首次成功尝试模拟各种 BMG 在动态压缩以及室温和高温下的机械响应。特别是,在一些 BMG 中实验观察到的负 SRS 已被成功模拟。目前的工作对于基于 BMG 的下一代航天器防护罩的设计具有重要意义,该防护罩可减轻太空碎片超高速撞击的影响。
更新日期:2024-02-17
down
wechat
bug