当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic soft microfiberbots for robotic embolization
Science Robotics ( IF 25.0 ) Pub Date : 2024-02-21 , DOI: 10.1126/scirobotics.adh2479
Xurui Liu 1, 2 , Liu Wang 3, 4 , Yuanzhuo Xiang 2 , Fan Liao 1, 2 , Na Li 1, 2 , Jiyu Li 3 , Jiaxin Wang 5 , Qingyang Wu 1, 2 , Cheng Zhou 1, 2 , Youzhou Yang 1, 2 , Yuanshi Kou 1, 2 , Yueying Yang 1, 2 , Hanchuan Tang 1, 2 , Ning Zhou 6 , Chidan Wan 7 , Zhouping Yin 8, 9 , Guang-Zhong Yang 10 , Guangming Tao 2, 11, 12, 13 , Jianfeng Zang 1, 2, 9
Affiliation  

Cerebral aneurysms and brain tumors are leading life-threatening diseases worldwide. By deliberately occluding the target lesion to reduce the blood supply, embolization has been widely used clinically to treat cerebral aneurysms and brain tumors. Conventional embolization is usually performed by threading a catheter through blood vessels to the target lesion, which is often limited by the poor steerability of the catheter in complex neurovascular networks, especially in submillimeter regions. Here, we propose magnetic soft microfiberbots with high steerability, reliable maneuverability, and multimodal shape reconfigurability to perform robotic embolization in submillimeter regions via a remote, untethered, and magnetically controllable manner. Magnetic soft microfiberbots were fabricated by thermal drawing magnetic soft composite into microfibers, followed by magnetizing and molding procedures to endow a helical magnetic polarity. By controlling magnetic fields, magnetic soft microfiberbots exhibit reversible elongated/aggregated shape morphing and helical propulsion in flow conditions, allowing for controllable navigation through complex vasculature and robotic embolization in submillimeter regions. We performed in vitro embolization of aneurysm and tumor in neurovascular phantoms and in vivo embolization of a rabbit femoral artery model under real-time fluoroscopy. These studies demonstrate the potential clinical value of our work, paving the way for a robotic embolization scheme in robotic settings.

中文翻译:

用于机器人栓塞的磁性软微纤维机器人

脑动脉瘤和脑肿瘤是世界范围内威胁生命的主要疾病。通过故意闭塞靶病灶以减少血液供应,栓塞术在临床上已广泛用于治疗脑动脉瘤和脑肿瘤。传统的栓塞通常是通过将导管穿过血管到达目标病灶来进行,这往往受到复杂神经血管网络中导管可操纵性差的限制,尤其是在亚毫米区域。在这里,我们提出了具有高可操纵性、可靠的可操作性和多模态形状可重构性的磁性软微纤维机器人,通过远程、不受束缚和磁力可控的方式在亚毫米区域执行机器人栓塞。磁性软微纤维机器人是通过将磁性软复合材料热拉制成微纤维,然后进行磁化和成型过程以赋予螺旋磁极性而制成的。通过控制磁场,磁性软微纤维机器人在流动条件下表现出可逆的拉长/聚集形状变形和螺旋推进,从而允许通过复杂的脉管系统进行可控导航,并在亚毫米区域进行机器人栓塞。我们在神经血管模型中进行了动脉瘤和肿瘤的体外栓塞,并在实时透视下对兔股动脉模型进行了体内栓塞。这些研究证明了我们工作的潜在临床价值,为机器人环境中的机器人栓塞方案铺平了道路。
更新日期:2024-02-21
down
wechat
bug