当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cooperative near- and far-field thermal management via diffusive superimposed dipoles
Applied Physics Reviews ( IF 15.0 ) Pub Date : 2024-02-26 , DOI: 10.1063/5.0190120
Pengfei Zhuang 1 , Xinchen Zhou 1 , Liujun Xu 2 , Jiping Huang 1
Affiliation  

Active metadevices with external excitations exhibit significant potential for advanced heat regulation. Nonetheless, conventional inputs, like heating/cooling and introducing convection by rotating plate, display inherent limitations. One is the only focus on far-field control to eliminate temperature distortion in the background while neglecting near-field regulation in the functional region. Another is lacking adaptability due to complex devices like thermoelectric modules and stepping motors. To tackle these challenges, the concept of diffusive superimposed dipoles characterized by orthogonal thermal dipole moments is proposed. Cooperative near- and far-field regulation of temperature fields is achieved by designing superimposed dipole moments, enabling transparency, and cloaking functionalities with isotropic and homogeneous materials. Simulation and experiment outcomes affirm the efficacy of this adaptive thermal field control technique, even when interface thermal resistance is taken into account. Adaptivity stems from dipole moment decomposability, allowing metadevices to operate in various heat flux directions (0°–360°) and background thermal conductivity. These findings could pave the way for cooperative and adaptive thermal management and hold potential applications in other Laplace fields, including direct current and hydrodynamics.

中文翻译:

通过扩散叠加偶极子进行协同近场和远场热管理

具有外部激励的有源元器件在先进的热调节方面表现出巨大的潜力。尽管如此,传统的输入,如加热/冷却和通过旋转板引入对流,显示出固有的局限性。一是只注重远场控制以消除背景温度畸变,而忽略了功能区的近场调节。另一个是由于热电模块和步进电机等复杂设备而缺乏适应性。为了应对这些挑战,提出了以正交热偶极矩为特征的扩散叠加偶极子的概念。通过设计叠加偶极矩、实现透明度以及使用各向同性和均质材料的隐身功能,可以实现温度场的协同近场和远场调节。仿真和实验结果证实了这种自适应热场控制技术的有效性,即使考虑了界面热阻。适应性源于偶极矩可分解性,允许元设备在各种热通量方向(0°–360°)和背景热导率下运行。这些发现可以为合作和自适应热管理铺平道路,并在其他拉普拉斯领域(包括直流和流体动力学)中具有潜在的应用。
更新日期:2024-02-26
down
wechat
bug