当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Opto-fluidically multiplexed assembly and micro-robotics
Light: Science & Applications ( IF 19.4 ) Pub Date : 2024-02-27 , DOI: 10.1038/s41377-024-01406-4
Elena Erben , Weida Liao , Antonio Minopoli , Nicola Maghelli , Eric Lauga , Moritz Kreysing

Techniques for high-definition micromanipulations, such as optical tweezers, hold substantial interest across a wide range of disciplines. However, their applicability remains constrained by material properties and laser exposure. And while microfluidic manipulations have been suggested as an alternative, their inherent capabilities are limited and further hindered by practical challenges of implementation and control. Here we show that the iterative application of laser-induced, localized flow fields can be used for the relative positioning of multiple micro-particles, irrespectively of their material properties. Compared to the standing theoretical proposal, our method keeps particles mobile, and we show that their precision manipulation is non-linearly accelerated via the multiplexing of temperature stimuli below the heat diffusion limit. The resulting flow fields are topologically rich and mathematically predictable. They represent unprecedented microfluidic control capabilities that are illustrated by the actuation of humanoid micro-robots with up to 30 degrees of freedom, whose motions are sufficiently well-defined to reliably communicate personal characteristics such as gender, happiness and nervousness. Our results constitute high-definition micro-fluidic manipulations with transformative potential for assembly, micro-manufacturing, the life sciences, robotics and opto-hydraulically actuated micro-factories.



中文翻译:

光流道复用装配和微型机器人

高清显微操作技术(例如光镊)引起了各个学科的广泛兴趣。然而,它们的适用性仍然受到材料特性和激光照射的限制。尽管微流体操作被建议作为替代方案,但其固有的能力受到限制,并受到实施和控制的实际挑战的进一步阻碍。在这里,我们表明,激光诱导的局部流场的迭代应用可用于多个微粒的相对定位,而不管它们的材料特性如何。与现有的理论建议相比,我们的方法使粒子保持移动,并且我们表明,通过低于热扩散极限的温度刺激的复用,它们的精确操纵是非线性加速的。由此产生的流场具有丰富的拓扑结构并且在数学上是可预测的。它们代表了前所未有的微流体控制能力,这通过具有高达 30 个自由度的人形微型机器人的驱动来体现,这些机器人的运动足够明确,可以可靠地传达个人特征,例如性别、快乐和紧张。我们的研究结果构成了高清微流体操作,具有装配、微制造、生命科学、机器人和光液压驱动微型工厂的变革潜力。

更新日期:2024-02-27
down
wechat
bug