当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Customizing polymeric binders for advanced lithium batteries: Design principles and beyond
Applied Physics Reviews ( IF 15.0 ) Pub Date : 2024-03-06 , DOI: 10.1063/5.0182553
Jieun Kang 1 , Jin Yong Kwon 2 , Dong-Yeob Han 1 , Soojin Park 1 , Jaegeon Ryu 2
Affiliation  

As society strides toward a sustainable future powered by lithium-ion batteries, the integral role of polymeric binders becomes increasingly evident. Historically serving as a film former and chemical adhesive that amalgamates the active host materials and conductive carbon in battery electrodes, their role has been redefined with the advent of innovative battery systems and host materials. These emerging technologies pose unique challenges, propelling the shift toward “customizable” binder designs. Polymeric binders should now ensure structural robustness, especially for high-capacity host materials, by leveraging varied intermolecular interactions to counteract internal stresses. Additionally, incorporating high-voltage electrode materials or electrolytes demands binders with an expansive electrochemical stability window. The interface energy control of binders is also critical, especially when incorporating dissolving cathodes or transitioning to solid-state electrolytes. This review provides a comprehensive understanding, breaking down the design principles of polymeric binders into three distinct paradigms: (1) structural design for high-capacity anodes, (2) electrochemical design for high-voltage cathodes or electrolytes, and (3) interfacial design for dissolving cathodes and solid-state batteries. Our discourse offers both a reflection on the evolving multifunctional nature of binders and a roadmap for future endeavors in the binder design for advanced lithium battery chemistries.

中文翻译:

为先进锂电池定制聚合物粘合剂:设计原理及其他

随着社会迈向由锂离子电池驱动的可持续未来,聚合物粘合剂的不可或缺的作用变得越来越明显。历史上,它们作为成膜剂和化学粘合剂,将活性主体材料和导电碳混合在电池电极中,随着创新电池系统和主体材料的出现,它们的作用已被重新定义。这些新兴技术带来了独特的挑战,推动了向“可定制”活页夹设计的转变。聚合物粘合剂现在应该通过利用不同的分子间相互作用来抵消内应力,以确保结构坚固性,特别是对于高容量主体材料。此外,结合高压电极材料或电解质需要具有广阔电化学稳定性窗口的粘合剂。粘合剂的界面能控制也至关重要,特别是在加入溶解阴极或转变为固态电解质时。本综述提供了全面的理解,将聚合物粘合剂的设计原理分为三个不同的范式:(1)高容量阳极的结构设计,(2)高压阴极或电解质的电化学设计,以及(3)界面设计用于溶解阴极和固态电池。我们的演讲既反映了粘合剂不断发展的多功能性,也为先进锂电池化学材料粘合剂设计的未来努力提供了路线图。
更新日期:2024-03-06
down
wechat
bug