当前位置: X-MOL 学术Quantum › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors
Quantum ( IF 6.4 ) Pub Date : 2024-03-14 , DOI: 10.22331/q-2024-03-14-1281
Daniel Bochen Tan 1 , Dolev Bluvstein 2 , Mikhail D. Lukin 2 , Jason Cong 1
Affiliation  

Dynamically field-programmable qubit arrays (DPQA) have recently emerged as a promising platform for quantum information processing. In DPQA, atomic qubits are selectively loaded into arrays of optical traps that can be reconfigured during the computation itself. Leveraging qubit transport and parallel, entangling quantum operations, different pairs of qubits, even those initially far away, can be entangled at different stages of the quantum program execution. Such reconfigurability and non-local connectivity present new challenges for compilation, especially in the layout synthesis step which places and routes the qubits and schedules the gates. In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements, representing cutting-edge experimental platforms. Within this architecture, we discretize the state space and formulate layout synthesis as a satisfiability modulo theories problem, which can be solved by existing solvers optimally in terms of circuit depth. For a set of benchmark circuits generated by random graphs with complex connectivities, our compiler OLSQ-DPQA reduces the number of two-qubit entangling gates on small problem instances by 1.7x compared to optimal compilation results on a fixed planar architecture. To further improve scalability and practicality of the method, we introduce a greedy heuristic inspired by the iterative peeling approach in classical integrated circuit routing. Using a hybrid approach that combined the greedy and optimal methods, we demonstrate that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture, resulting in 5.1X less two-qubit gates for 90 qubit quantum circuits. These methods enable programmable, complex quantum circuits with neutral atom quantum computers, as well as informing both future compilers and future hardware choices.

中文翻译:

为动态现场可编程中性原子阵列处理器编译量子电路

动态现场可编程量子位阵列(DPQA)最近已成为量子信息处理的一个有前途的平台。在 DPQA 中,原子量子位被选择性地加载到光陷阱阵列中,这些光陷阱阵列可以在计算过程中重新配置。利用量子位传输和并行纠缠量子操作,不同的量子位对,即使是最初相距较远的量子位,也可以在量子程序执行的不同阶段进行纠缠。这种可重构性和非局部连接给编译带来了新的挑战,特别是在放置和路由量子位以及安排门的布局综合步骤中。在本文中,我们考虑了一种包含多个阵列并支持二维阵列移动的 DPQA 架构,代表了尖端的实验平台。在该架构中,我们离散化状态空间并将布局综合公式化为可满足性模理论问题,可以通过现有求解器在电路深度方面最佳地解决。对于由具有复杂连接性的随机图生成的一组基准电路,与固定平面架构上的最佳编译结果相比,我们的编译器 OLSQ-DPQA 将小问题实例上的两个量子位纠缠门的数量减少了 1.7 倍。为了进一步提高该方法的可扩展性和实用性,我们引入了一种受经典集成电路布线中迭代剥离方法启发的贪婪启发式方法。使用结合了贪婪方法和最优方法的混合方法,我们证明了与网格固定架构相比,我们基于 DPQA 的编译电路具有减少的扩展开销,从而使 90 量子位量子电路的两个量子位门减少了 5.1 倍。这些方法使得可编程、复杂的量子电路与中性原子量子计算机成为可能,并为未来的编译器和未来的硬件选择提供信息。
更新日期:2024-03-14
down
wechat
bug