当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor
Ultrasonics Sonochemistry ( IF 8.4 ) Pub Date : 2024-03-14 , DOI: 10.1016/j.ultsonch.2024.106849
Gaoju Xia , Weibin You , Sivakumar Manickam , Joon Yong Yoon , Xiaoxu Xuan , Xun Sun

Hydrodynamic cavitation (HC), a promising technology for enhancing processes, has shown distinct effectiveness and versatility in various chemical and environmental applications. The recently developed advanced rotational hydrodynamic cavitation reactors (ARHCRs), employing cavitation generation units (CGUs) to induce cavitation, have demonstrated greater suitability for industrial-scale applications than conventional devices. However, the intricate interplay between vortex and cavitation, along with its spatial-temporal evolution in the complex flow field of ARHCRs, remains inadequately elucidated. This study investigated the interaction mechanism between cavitation and vortex in a representative interaction-type ARHCR for the first time using the “simplified flow field strategy” and the -criterion. The findings reveal that the flow instability caused by CGUs leads to intricate helical and vortex flows, subsequently giving rise to both sheet and vortex cavitation. Subsequently, utilizing the -criterion, the vortex structures are identified to be concentrated inside and at CGU edges with evolution process of mergence and separation. These vortex structures directly influence the shape and dimensions of cavities, establishing a complex interaction with cavitation. Lastly, the vorticity transport equation analysis uncovered that the stretching and dilatation terms dominate the vorticity transport process. Simultaneously, the baroclinic term focuses on the vapor-liquid interface, characterized by significant alterations in density and pressure gradients. These findings contribute to a better comprehension of the cavitation-vortex interaction in ARHCRs.

中文翻译:


先进旋转水动力空化反应器中空化-涡流相互作用机制的数值模拟



水力空化 (HC) 是一种很有前景的工艺增强技术,在各种化学和环境应用中显示出明显的有效性和多功能性。最近开发的先进旋转水力空化反应器(ARHCR)采用空化发生单元(CGU)来引发空化,已证明比传统设备更适合工业规模应用。然而,涡流和空化之间错综复杂的相互作用,及其在 ARHCR 复杂流场中的时空演化,仍然没有得到充分阐明。本研究首次利用“简化流场策略”和-准则研究了代表性相互作用型ARHCR中空化与涡流的相互作用机制。研究结果表明,由 CGU 引起的流动不稳定性会导致复杂的螺旋流和涡流,随后引起片状空化和涡流空化。随后,利用-准则,涡流结构被识别为集中在CGU内部和边缘处,并具有合并和分离的演化过程。这些涡流结构直接影响空腔的形状和尺寸,与空化建立复杂的相互作用。最后,涡度传递方程分析发现,拉伸项和膨胀项在涡度传递过程中占主导地位。同时,斜压术语重点关注汽液界面,其特征是密度和压力梯度的显着变化。这些发现有助于更好地理解 ARHCR 中的空化-涡流相互作用。
更新日期:2024-03-14
down
wechat
bug