当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A von-Neumann-like photonic processor and its application in studying quantum signature of chaos
Light: Science & Applications ( IF 19.4 ) Pub Date : 2024-03-14 , DOI: 10.1038/s41377-024-01413-5
Shang Yu , Wei Liu , Si-Jing Tao , Zhi-Peng Li , Yi-Tao Wang , Zhi-Peng Zhong , Raj B. Patel , Yu Meng , Yuan-Ze Yang , Zhao-An Wang , Nai-Jie Guo , Xiao-Dong Zeng , Zhe Chen , Liang Xu , Ning Zhang , Xiao Liu , Mu Yang , Wen-Hao Zhang , Zong-Quan Zhou , Jin-Shi Xu , Jian-Shun Tang , Yong-Jian Han , Chuan-Feng Li , Guang-Can Guo

Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.



中文翻译:

类冯诺依曼光子处理器及其在混沌量子特征研究中的应用

光子量子计算发挥着重要作用并具有独特的优势。在 Knill-Laflamme-Milburn 的里程碑式工作二十年后,人们提出了各种光子处理器架构,并且相对于经典计算机的量子优势也得到了证明。现在是将这项技术应用于实际应用的最佳时机。然而,在当前的技术水平上,这一目标受到体光学器件的可编程性或现有处理器架构的集成光学器件的损失的限制,而资源成本也是一个问题。在这里,我们提出了一种基于时间模式编码和表循环结构的类冯诺依曼架构,它具有多模式通用可编程性、资源效率、相位稳定性和软件可扩展性。为了说明这些优点,我们在同一处理器上执行两个具有不同资源需求的不同程序,从两个方面研究混沌的量子特征:在相空间(13个模式)中表现出的特征行为,以及费米黄金法则之前没有以定量的方式进行过实验研究(26 种模式)。最大程序包含具有1694个可自由调节相位的光学干涉仪网络。考虑到当前的最先进水平,我们的架构是现实世界应用程序中最有希望的候选者。

更新日期:2024-03-18
down
wechat
bug