当前位置: X-MOL 学术Geoderma › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-resolution digital mapping of soil erodibility in China
Geoderma ( IF 6.1 ) Pub Date : 2024-03-12 , DOI: 10.1016/j.geoderma.2024.116853
Longhui Sun , Feng Liu , Xuchao Zhu , Ganlin Zhang

Soil erodibility (K) is the intrinsic susceptibility of a soil to water erosion. Currently, its detailed and accurate spatial distribution information especially over large areas is urgently required for national and regional soil erosion assessment and soil conservation decision making. This study combined pedotransfer function with digital soil mapping techniques to develop a high-resolution map of soil erodibility across China. The First, based on a recent national soil survey, we adopted the erosion-productivity impact calculator (EPIC) to calculate soil erodibility values at 4710 soil sampling points. Then, with the caclulated values of points, we used five techniques including polygon linking (PL), ordinary kriging (OK), Cubist, extreme gradient boosting (XGBoost), and random forests (RF) to generate spatial distribution of soil erodibility. The three latter machine learning techniques modeled the quantitative relationships between soil erodibility and a set of environmental covariates. The results showed that machine learning methods exhibited much more spatial details than the PL and OK did. Among the five techniques the RF achieved the highest accuracy with R of 0.49 and RMSE of 0.0077 t ha h ha MJ mm based on 10-fold cross-validation. Spatial uncertainty analysis of the RF predictions showed that high uncerntainty occurred in northwestern China and low uncertainty in the center and southeast. We found that topographical and climatic variables are major environmental factors indirectly controlling spatial variation of soil erodibility while the soil particle composition and SOC contents directly influence the variation.
更新日期:2024-03-12
down
wechat
bug