当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review
Progress in Materials Science ( IF 37.4 ) Pub Date : 2024-04-06 , DOI: 10.1016/j.pmatsci.2024.101295
Mohammad Javad Sohrabi , Alireza Kalhor , Hamed Mirzadeh , Kinga Rodak , Hyoung Seop Kim

Metalloids and transition/refractory elements typically differ significantly in the electronic structure and atomic size, allowing for stronger solid-solution hardening in high-entropy alloys (HEAs) as well as improved work-hardening capability, which leads to exceptional strength-ductility balance. In this regard, Si addition has opened up a new pathway for developing novel and high-performance Cantor-based, lightweight, and refractory HEAs, which has recently attracted considerable attention from the materials science community. Accordingly, the present review paper summarizes the recent progress in tailoring the mechanical properties and strengthening mechanisms of Si-added HEAs. After reviewing the general strengthening mechanisms of HEAs, the impact of Si addition is critically discussed, especially its effects on the (I) solid-solution hardening by local lattice distortion and chemical short-range order (SRO) hardening, (II) second-phase strengthening by promoting the formation of disordered solid-solution phases, silicides, σ-phase, and other intermetallics, (III) structural refinement and facilitating the development of heterostructures, and (IV) work-hardening behavior by altering the dislocation arrangements, boosting the twinning-induced plasticity (TWIP) effect as well as HCP and BCC transformation-induced plasticity (TRIP) effect by reduced and variable stacking fault energy (SFE). Finally, the research gaps and future prospects are introduced, including metastability engineering, superplasticity, application of severe plastic deformation (SPD) techniques for grain refinement, and additive manufacturing.

中文翻译:

通过非金属硅合金化调整高熵合金的强化机制以实现优异的强度-延展性协同作用:综述

类金属和过渡/难熔元素通常在电子结构和原子尺寸方面存在显着差异,从而可以在高熵合金 (HEA) 中实现更强的固溶硬化,并提高加工硬化能力,从而实现卓越的强度-延展性平衡。在这方面,Si的添加开辟了开发新型高性能康托基轻质耐火HEA的新途径,最近引起了材料科学界的广泛关注。因此,本综述总结了在调整添加硅的 HEA 的机械性能和强化机制方面的最新进展。在回顾了 HEA 的一般强化机制后,我们批判性地讨论了添加 Si 的影响,特别是它对 (I) 局部晶格畸变固溶强化和化学短程有序 (SRO) 强化的影响,(II) 二次强化的影响。通过促进无序固溶相、硅化物、σ相和其他金属间化合物的形成来强化相,(III)结构细化并促进异质结构的发展,(IV)通过改变位错排列来提高加工硬化行为,促进孪晶诱发塑性 (TWIP) 效应以及 HCP 和 BCC 相变诱发塑性 (TRIP) 效应(通过降低且可变的堆垛层错能 (SFE))实现。最后,介绍了研究差距和未来展望,包括亚稳定性工程、超塑性、严重塑性变形(SPD)技术在晶粒细化中的应用以及增材制造。
更新日期:2024-04-06
down
wechat
bug