当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid plasmonic valley-Hall topological insulators
Nanophotonics ( IF 7.5 ) Pub Date : 2024-04-12 , DOI: 10.1515/nanoph-2023-0902
Sam Lin 1 , Zi Jing Wong 1, 2, 3
Affiliation  

The emerging field of photonic topological insulators offers promising platforms for high-performance optical communication, computing, and sensing. However, conventional photonic topological insulator designs typically operate within the diffraction limit due to their dielectric nature. This limitation imposes constraints on device miniaturization, reduces light–matter interaction, and decreases overall device sensitivity. Introducing a new valley-Hall hybrid plasmonic topological insulator, we overcome this limitation by exploiting the coupling of surface plasmon oscillations with the optical modes of a dielectric photonic crystal, allowing for sub-diffraction vertical confinement of light. Deep-subwavelength chiral edge states can, therefore, be generated and robustly guided along disordered Z-shaped topological boundaries with much lower propagation loss compared to purely plasmonic platforms. Such extreme manipulation of light on an integrated chip platform maximizes light–matter interaction and opens the door for truly compact and efficient optical modulators, molecular sensors, and next-generation nanophotonic and quantum devices.

中文翻译:

混合等离子体谷-霍尔拓扑绝缘体

光子拓扑绝缘体的新兴领域为高性能光通信、计算和传感提供了有前途的平台。然而,由于其介电性质,传统的光子拓扑绝缘体设计通常在衍射极限内工作。这种限制限制了器件的小型化,减少了光与物质的相互作用,并降低了器件的整体灵敏度。引入一种新的谷霍尔混合等离子体拓扑绝缘体,我们通过利用表面等离子体振荡与介电光子晶体的光学模式的耦合来克服这一限制,从而实现光的亚衍射垂直限制。因此,可以生成深亚波长手性边缘态,并沿着无序的 Z 形拓扑边界稳健地引导,与纯等离子体平台相比,传播损耗要低得多。在集成芯片平台上对光进行这种极端的操纵可以最大限度地提高光与物质的相互作用,并为真正紧凑高效的光调制器、分子传感器以及下一代纳米光子和量子器件打开了大门。
更新日期:2024-04-12
down
wechat
bug