当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Halide Superionic Conductors for All-Solid-State Batteries: Effects of Synthesis and Composition on Lithium-Ion Conductivity
ACS Energy Letters ( IF 22.0 ) Pub Date : 2024-04-15 , DOI: 10.1021/acsenergylett.4c00317
Shuhao Yang 1 , Se Young Kim 1 , Guoying Chen 1
Affiliation  

Owing to their high-voltage stabilities, halide superionic conductors such as Li3YCl6 recently emerged as promising solid electrolyte (SE) materials for all-solid-state batteries (ASSBs). It has been shown that by either introducing off-stoichiometry in solid-state (SS) synthesis or using a mechanochemical (MC) synthesis method the ionic conductivities of Li3–3xY1+xCl6 can increase up to an order of magnitude. The underlying mechanism, however, is unclear. In the present study, we adopt a hopping frequency analysis method of impedance spectra to reveal the correlations in stoichiometry, crystal structure, synthesis conditions, Li+ carrier concentrations, hopping migration barriers, and ionic conductivity. We show that unlike the conventional Li3YCl6 made by SS synthesis, mobile Li+ carriers in the defect-containing SS-Li3–3xY1+xCl6 (0 < x < 0.17) and MC-Li3–3xY1+xCl6 are generated with an activation energy and their concentration is dependent on temperature. Higher ionic conductivities in these samples arise from a combination of a higher Li+ carrier concentration and lower migration energy barriers. A new off-stoichiometric halide (Li2.61Y1.13Cl6) with the highest ionic conductivity (0.47 mS cm–1) in the series is discovered, which delivers exceptional cycling performance (∼90% capacity retention after 1000 cycles) in ASSB cells equipped with an uncoated high-energy LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode. This work sheds light on the thermal activation process that releases trapped Li+ ions in defect-containing halides and provides guidance for the future development of superionic conductors for all-solid-state batteries.

中文翻译:

全固态电池卤化物超离子导体:合成和组成对锂离子电导率的影响

由于其高电压稳定性,卤化物超离子导体(例如Li 3 YCl 6 )最近成为全固态电池(ASSB)有前途的固体电解质(SE)材料。研究表明,通过在固态(SS)合成中引入非化学计量或使用机械化学(MC)合成方法,Li 3–3 x Y 1+ x Cl 6的离子电导率可以提高到一个数量级震级。然而,其根本机制尚不清楚。在本研究中,我们采用阻抗谱的跳频分析方法来揭示化学计量、晶体结构、合成条件、Li +载流子浓度、跳频迁移势垒和离子电导率之间的相关性。我们发现,与通过SS合成制备的传统Li 3 YCl 6不同,含有缺陷的SS-Li 3–3 x Y 1+ x Cl 6 (0 < x < 0.17) 和MC-Li 3–中存在移动的Li +载流子。 3 x Y 1+ x Cl 6通过活化能产生,并且它们的浓度取决于温度。这些样品中较高的离子电导率源于较高的Li +载流子浓度和较低的迁移能垒。发现了该系列中离子电导率最高 (0.47 mS cm –1 ) 的新型非化学计量卤化物 (Li 2.61 Y 1.13 Cl 6 ),可在 ASSB 电池中提供卓越的循环性能(1000 次循环后容量保持率为 90%)配备无涂层高能LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811)阴极。这项工作揭示了释放含缺陷卤化物中捕获的Li +离子的热激活过程,并为全固态电池超离子导体的未来发展提供指导。
更新日期:2024-04-15
down
wechat
bug