当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological optics, photonics and bioinspired radiative cooling
Progress in Materials Science ( IF 37.4 ) Pub Date : 2024-04-04 , DOI: 10.1016/j.pmatsci.2024.101291
Zhen Yan , Huatian Zhai , Desong Fan , Qiang Li

Radiative cooling with eco-friendly and zero-energy advantages is considered one of the most viable solutions to address the conflict between traditional energy-intensive cooling systems and global decarbonization. Despite significant advances, the development of radiative cooling still faces many challenges, such as fine-engineering of materials and structures to enhance solar reflection and mid-infrared emission, solar absorption caused by coloring for colorful radiative cooling, and spectral modulation for environmental-adaptative dynamic radiative cooling. Over millions of years of natural selection, utilizing a limited set of biomaterial palettes, optimized strategies, and micro-nano structural design, natural organisms have demonstrated fine control over light-matter interactions at different wavelength scales. Including broadband reflection of the sunlight to prevent solar heating, narrowband reflection of visible light to display brilliant colors, strong emission of mid-infrared wave to complete its cooling, and environmental-adaptative spectral modulation to achieve camouflage or thermal regulation. These biological structures and strategies provide extremely valuable inspiration for the development of advanced radiative cooling techniques. In this review, we systematically summarized the research progress of bioinspired radiative cooling technologies. Emphatically introducing the mechanism of key biological structures to achieve several optical functions, and discussing the various bioinspired radiative coolers and their application potential in different fields. Finally, we present the remaining challenges and outlook on the possible research directions in the future. It is hoped that this review will contribute to further research on bioinspired radiative cooling technology and make exciting progress.

中文翻译:

生物光学、光子学和仿生辐射冷却

具有环保和零能耗优势的辐射冷却被认为是解决传统能源密集型冷却系统与全球脱碳之间冲突的最可行的解决方案之一。尽管取得了重大进展,辐射冷却的发展仍然面临许多挑战,例如材料和结构的精细工程以增强太阳反射和中红外发射、彩色辐射冷却的着色引起的太阳吸收以及环境适应性的光谱调制动态辐射冷却。经过数百万年的自然选择,利用有限的生物材料调色板、优化的策略和微纳米结构设计,自然生物体已经证明了对不同波长尺度的光与物质相互作用的精细控制。包括太阳光的宽带反射以防止太阳加热,可见光的窄带反射以显示绚丽的色彩,中红外波的强烈发射以完成其冷却,以及环境适应性的光谱调制以实现伪装或热调节。这些生物结构和策略为先进辐射冷却技术的发展提供了极其宝贵的灵感。本文系统总结了仿生辐射冷却技术的研究进展。重点介绍了关键生物结构实现多种光学功能的机理,并讨论了各种仿生辐射冷却器及其在不同领域的应用潜力。最后,我们提出了剩余的挑战以及对未来可能的研究方向的展望。希望本次综述能够有助于仿生辐射冷却技术的进一步研究,并取得令人兴奋的进展。
更新日期:2024-04-04
down
wechat
bug