当前位置: X-MOL 学术Environ. Sci.: Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cooperative catalytic behavior of CoS and Bi2S3 nanoparticles on Zr:BiVO4 photoanodes for enhanced photoelectrochemical sulfite oxidation coupled with pharmaceutical pollution degradation
Environmental Science: Nano ( IF 7.3 ) Pub Date : 2024-04-18 , DOI: 10.1039/d4en00018h
Prabhakarn Arunachalam 1 , Maged N. Shaddad 2 , Mabrook S. Amer 1 , Abdulaziz M. Alsalman 1 , Jagannathan Madhavan 3
Affiliation  

Photoelectrocatalysis is a promising advancing technology that converts energy into electricity and purifies the environment. A photoelectrochemical (PEC) reaction that splits water and degrades pharmaceutical pollutants can be achieved using bismuth vanadate (BiVO4). The water oxidation dynamics of BiVO4 photoanodes are sluggish owing to poor charge separation. In this paper, we demonstrate that bismuth sulfide (Bi2S3) and cobalt sulfide (CoS) nanoparticles have a cooperative effect on Zr-doped BiVO4 electrodes (Zr:BiVO4) fabricated via PEC techniques. PEC water splitting results reveal that optimal Zr:BiVO4@Bi2S3–CoS films have a photocurrent response of 3.09 mA cm−2 at 1.23 V vs. the RHE, which is three times better than Zr:BiVO4 films. As a result of combining the above features, Zr:BiVO4@Bi2S3/CoS electrodes achieved 1.53% applied bias photon-to-current efficiency (ABPE), with a substantial reduction in photocurrent onset potential. Additionally, the composite photoanode demonstrated superior performance in the PEC degradation of tetracycline hydrochloride (TCH) to previously reported photonanodes. In the PEC reaction, Zr:BiVO4@Bi2S3/CoS yielded the most efficient degradation of TCH (94%), which was six times more than Zr:BiVO4 and EC (55%). The present study presents a visible light-responsive, efficient, sustainable water-splitting technique for producing hydrogen and provides new insights into wastewater treatment.

中文翻译:

CoS 和 Bi2S3 纳米颗粒在 Zr:BiVO4 光阳极上的协同催化行为增强光电化学亚硫酸盐氧化与药物污染降解

光电催化是一种很有前途的先进技术,可以将能量转化为电能并净化环境。使用钒酸铋 (BiVO 4 )可以实现分解水并降解药物污染物的光电化学 (PEC) 反应。由于电荷分离不良, BiVO 4光阳极的水氧化动力学缓慢。在本文中,我们证明硫化铋(Bi 2 S 3 )和硫化钴(CoS)纳米颗粒对通过PEC技术制造的Zr掺杂BiVO 4电极(Zr:BiVO 4)具有协同作用。 PEC水分解结果表明,最佳Zr:BiVO 4 @Bi 2 S 3 –CoS薄膜在1.23 V vs. RHE下的光电流响应为3.09 mA cm -2 ,比Zr:BiVO 4薄膜好三倍。综合上述特征,Zr:BiVO 4 @Bi 2 S 3 /CoS 电极实现了 1.53% 的外加偏压光子电流效率 (ABPE),同时光电流起始电位大幅降低。此外,复合光电阳极在盐酸四环素 (TCH) 的 PEC 降解方面表现出优于先前报道的光电纳米电极的性能。在PEC反应中,Zr:BiVO 4 @Bi 2 S 3 /CoS对TCH的降解效率最高(94%),是Zr:BiVO 4和EC(55%)的六倍。本研究提出了一种可见光响应、高效、可持续的水分解技术来生产氢气,并为废水处理提供了新的见解。
更新日期:2024-04-18
down
wechat
bug