当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High easy-plane anisotropy Y-Co intermetallic nanoparticles for boosting gigahertz magnetic loss ability
Acta Materialia ( IF 9.4 ) Pub Date : 2024-04-22 , DOI: 10.1016/j.actamat.2024.119947
Zhengyu Zhang , Tong Gao , Rongzhi Zhao , Chenglong Hu , Yijun Liao , Xiaolian Liu , Zhenhua Zhang , Yixing Li , Xuefeng Zhang

Soft magnetic materials with ferromagnetic loss abilities have been proven effective in solving gigahertz electromagnetic problems. However, it remains a challenge to synergistically improve their loss capacities and working frequencies due to the Snoek limit. Here, we proposed Y-Co nanoparticles with optimized magnetic anisotropy to break this limit and boost microwave absorption properties. As a result, the soft magnetic phases have manipulated the ferromagnetic loss ability, resulting in the improvement of the easy-plane anisotropy, thus increasing the resonance frequency. A loss peak at 6.2 GHz with a loss capacity (") of 0.74 can be found in soft magnetic phase-rich nanoparticles with easy-plane anisotropy, which is higher than that of hard magnetic phase-rich with easy-axis anisotropy (0.76, 4.3 GHz) and Co phase (0.4, 3.95 GHz) nanoparticles. The minimum reflection loss of it can reach −26.4 dB (6.85 GHz) with a broad effective absorption bandwidth of 4.35 GHz (5.85 ∼ 10.20 GHz). The present study provides intrinsic insight into the relationship between easy-plane anisotropy and magnetic loss ability, inspiring the design of high-frequency electromagnetic compatibility materials.

中文翻译:

高易平面各向异性Y-Co金属间纳米粒子可提高千兆赫兹磁损耗能力

具有铁磁损耗能力的软磁材料已被证明可以有效解决千兆赫电磁问题。然而,由于斯诺克极限,协同提高其损耗能力和工作频率仍然是一个挑战。在这里,我们提出了具有优化磁各向异性的 Y-Co 纳米粒子,以打破这一限制并提高微波吸收性能。因此,软磁相控制了铁磁损耗能力,从而改善了易平面各向异性,从而提高了谐振频率。易轴各向异性的软磁富相纳米粒子在6.2 GHz处出现损耗峰,损耗容量(“)为0.74,高于易轴各向异性的硬磁富相纳米粒子(0.76, 4.3 GHz)和Co相(0.4,3.95 GHz)纳米粒子的最小反射损耗可达-26.4 dB(6.85 GHz),有效吸收带宽为4.35 GHz(5.85 ∼ 10.20 GHz)。洞察易平面各向异性与磁损耗能力之间的关系,启发高频电磁兼容材料的设计。
更新日期:2024-04-22
down
wechat
bug