当前位置: X-MOL 学术Crit. Care › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Beta-blockade in V-V ECMO
Critical Care ( IF 15.1 ) Pub Date : 2024-04-25 , DOI: 10.1186/s13054-024-04923-1
Aravind K. Bommiasamy , Bishoy Zakhary , Ran Ran

To the Editor,

We read with great interest Staudacher et al.’s illustrative cases of beta-blocker therapy on V-V ECMO [1]. The authors’ excellent work reminds us not to focus on the easily measured arterial oxygen saturation (\({S}_{a}{O}_{2}\)) but rather on the much more physiologically important variable of delivered oxygen (\({DO}_{2}\)). Herein, we demonstrate physiologically and mathematically that beta-blockade for a patient completely dependent on V-V ECMO will always decrease \({DO}_{2}\) irrespective of its effect on \({S}_{a}{O}_{2}\).

To illustrate this concept mathematically, there are some reasonable assumptions that must be made. The first is that ECMO effective blood flow rate (EF) are within normal operational parameters of the membrane lung and remain constant during beta-blockade. Second, that the membrane lung is well functioning such that the post-membrane lung blood oxygen saturation (\({S}_{m}{{\text{O}}}_{2}\)) is 100%. Third, that the patient’s lungs are non-functional and contribute no oxygenation to the blood. Finally, given the relatively small contribution of dissolved oxygen to total oxygen content, we ignore 0.03 × \({P}_{m}{O}_{2}\) in the calculation to simplify the math. With these assumptions in place, the arterial saturation on V-V ECMO equation simplifies to Eq. (1):

$$\begin{gathered} S_{a} O_{2} = \frac{EF}{{CO}} \times S_{m} O_{2} + S_{v} O_{2} \left( {1 - \frac{EF}{{CO}}} \right) + 0.03 \times P_{m} O_{2} \hfill \\ S_{a} O_{2} = \frac{EF}{{CO}} + S_{v} O_{2} \left( {1 - \frac{EF}{{CO}}} \right) \hfill \\ \end{gathered}$$(1)

Equation 1: Patient arterial oxygen saturation on V-V ECMO simplified

If we rewrite Eq. (1), we get Eq. (2) [2]:

$$S_{a} O_{2} = \frac{{EF + S_{v} O_{2} \left( {CO - EF} \right)}}{CO}$$(2)

Equation 2: Patient arterial oxygen saturation rewritten

Likewise, if we rewrite the Fick equation, we get Eq. (3):

$$S_{a} O_{2} = S_{v} O_{2} + \frac{{VO_{2} }}{13.4 \times Hgb \times CO}$$(3)

Equation 3: Fick’s Equation solved for \({S}_{a}{O}_{2}\)

Equating Eqs. (2) and (3), then solving for SvO2, we get Eq. (4):

$$S_{v} O_{2} = 1 - \frac{{VO_{2} }}{13.4 \times Hgb \times EF}$$(4)

Equation 4: Determinants of \({S}_{v}{O}_{2}\)

Therefore, we find that though \({S}_{v}{O}_{2}\) is traditionally dependent on CO, this is not necessarily true on V-V ECMO. Its covariates, CO and \({S}_{a}{O}_{2}\), cancel out in the idealized scenario proposed above. The only determinants of \({S}_{v}{O}_{2}\) on V-V ECMO, then, are \({VO}_{2}\), Hgb, and EF as seen in Eq. (4).

Finally, we explore the effect of beta-blockers on delivered oxygen (\({DO}_{2}\)) with the specific question, does the increase in \({S}_{a}{O}_{2}\) triumph over the reduction in CO or vis versa?

Simplifying the DO2 equation:

$$DO_{2} = 13.4 \times Hgb \times CO \times S_{a} O_{2}$$(5)

Equation 5: Oxygen delivery simplified

Combining Eq. (3) with Eq. (5):

$$\begin{gathered} DO_{2} = 13.4 \times Hgb \times CO \times \left( {S_{v} O_{2} + \frac{{VO_{2} }}{13.4 \times Hgb \times CO}} \right) \hfill \\ \quad \quad \; = 13.4 \times Hgb \times CO \times S_{v} O_{2} + VO_{2} \hfill \\ \end{gathered}$$(6)

Equation 6: \({DO}_{2}\) with relation to \({S}_{v}{O}_{2}\)

Lastly, combining Eq. (6) with Eq. (4):

$$DO_{2} = 13.4 \times Hgb \times CO \times \left( {1 - \frac{{VO_{2} }}{13.4 \times Hgb \times EF}} \right) + VO_{2}$$(7)

Equation 7: \({DO}_{2}\) on V-V ECMO expressed independent of \({S}_{a}{O}_{2}\) and \({S}_{v}{O}_{2}\)

This final equation expresses delivery of oxygen on V-V ECMO as dependent only on hemoglobin, cardiac output, ECMO effective blood flow rate, and the body’s consumption of oxygen. Introducing beta-blocker therapy, then, irrespective of its effect on \({S}_{a}{O}_{2}\), reduces delivery of oxygen through reduction of cardiac output if Hgb, EF, and \({VO}_{2}\) remains constant. While it is conceivable that beta-blocker therapy could reduce \({VO}_{2}\) by decreasing myocyte oxygen consumption, thereby increasing \({DO}_{2}\), this effect is unlikely in normal physiologic ranges because myocyte oxygen consumption is typically only 10% of total body oxygen consumption (6–8 ml/100 g/min). At maximal inotropy and chronotropy, however, myocyte oxygen consumption could become a nontrivial factor and beta-blocker therapy may have utility as an antihypertensive agent in the tachycardic patient. For the vast majority of cases, however, beta blockade is not indicated during V-V ECMO as it effectively reduces DO2.

Not applicable.

V-V ECMO:

Veno-venous extracorporeal membrane oxygenation

\(DO_{2}\) :

Patient oxygen delivery

\(S_{a} O_{2}\) :

Patient arterial oxygen saturation

\(EF\) :

ECMO flow rate

\(S_{m} O_{2}\) :

Post-oxygenator oxygen saturation

\(VO_{2}\) :

Patient oxygen consumption

\(Hgb\) :

Hemoglobin

\(P_{m} O_{2}\) :

Partial pressure of oxygen post-oxygenator

  1. Staudacher DL, Wengenmayer T, Schmidt M. Beta-blockers in refractory hypoxemia on venovenous extracorporeal membrane oxygenation: a double-edged sword. Crit Care. 2023;27(1):360.

    Article PubMed PubMed Central Google Scholar

  2. Messai E, Bouguerra A, Harmelin G, Di Lascio G, Cianchi G, Bonacchi M. A new formula for determining arterial oxygen saturation during venovenous extracorporeal oxygenation. Intensive Care Med. 2013;39(2):327–34.

    Article CAS PubMed Google Scholar

Download references

None.

None.

Authors and Affiliations

  1. Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA

    Aravind K. Bommiasamy & Bishoy Zakhary

  2. Department of Emergency Medicine Critical Care Section, Oregon Health and Science University, Portland, OR, USA

    Ran Ran

Authors
  1. Aravind K. BommiasamyView author publications

    You can also search for this author in PubMed Google Scholar

  2. Bishoy ZakharyView author publications

    You can also search for this author in PubMed Google Scholar

  3. Ran RanView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

AKB, BZ, and RR have contributed in all parts in producing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aravind K. Bommiasamy.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

None.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommiasamy, A.K., Zakhary, B. & Ran, R. Beta-blockade in V-V ECMO. Crit Care 28, 139 (2024). https://doi.org/10.1186/s13054-024-04923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-024-04923-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:

VV ECMO 中的 β 阻断

致编辑,

我们饶有兴趣地阅读了 Staudacher 等人关于 VV ECMO β 受体阻滞剂治疗的说明性案例 [1]。作者的出色工作提醒我们不要关注容易测量的动脉血氧饱和度(\({S}_{a}{O}_{2}\)),而应该关注生理上更重要的变量——输送氧气(\({DO}_{2}\) )。在此,我们从生理学和数学上证明,完全依赖 VV ECMO 的患者的 β 阻断总是会减少\({DO}_{2}\),无论其对\({S}_{a}{O} 的影响如何_{2}\)

为了从数学上说明这个概念,必须做出一些合理的假设。首先,ECMO 有效血流量 (EF) 处于膜肺的正常操作参数范围内,并且在 β 阻断期间保持恒定。其次,膜肺功能良好,膜后肺血氧饱和度(\({S}_{m}{{\text{O}}}_{2}\))为100%。第三,患者的肺部没有功能,无法为血液提供氧合。最后,考虑到溶解氧对总氧含量的贡献相对较小,我们在计算中忽略 0.03 × \({P}_{m}{O}_{2}\)以简化数学计算。有了这些假设,VV ECMO 方程上的动脉饱和度就简化为方程: (1):

$$\begin{聚集} S_{a} O_{2} = \frac{EF}{{CO}} \times S_{m} O_{2} + S_{v} O_{2} \left( {1 - \frac{EF}{{CO}}} \right) + 0.03 \times P_{m} O_{2} \hfill \\ S_{a} O_{2} = \frac{EF}{{CO}} + S_{v} O_{2} \left( {1 - \frac{EF}{{CO}}} \right) \hfill \\ \end{聚集}$$ (1)

公式 1:简化的 VV ECMO 患者动脉血氧饱和度

如果我们重写方程。 (1),我们得到方程。 (二)[2]:

$$S_{a} O_{2} = \frac{{EF + S_{v} O_{2} \left( {CO - EF} \right)}}{CO}$$ (2)

方程 2:改写患者动脉血氧饱和度

同样,如果我们重写菲克方程,我们得到方程: (3):

$$S_{a} O_{2} = S_{v} O_{2} + \frac{{VO_{2} }}{13.4 \times Hgb \time CO}$$ (3)

方程 3:菲克方程求解\({S}_{a}{O}_{2}\)

等式(2) 和 (3),然后求解 S v O 2,​​我们得到方程: (4):

$$S_{v} O_{2} = 1 - \frac{{VO_{2} }}{13.4 \times Hgb \times EF}$$ (4)

方程 4:\({S}_{v}{O}_{2}\)的行列式

因此,我们发现虽然\({S}_{v}{O}_{2}\)传统上依赖于CO,但在 VV ECMO 上却不一定如此。它的协变量CO\({S}_{a}{O}_{2}\)在上面提出的理想化场景中相互抵消。那么,VV ECMO 上\({S}_{v}{O}_{2}\)的唯一决定因素是\({VO}_{2}\)、Hgb 和 EF,如等式 1 所示。 (4)。

最后,我们探讨了 β 受体阻滞剂对输送氧气 ( \({DO}_{2}\) ) 的影响,并提出了具体问题,\({S}_{a}{O}_{2 }\)战胜二氧化碳减排,还是反之亦然

简化 DO 2方程:

$$DO_{2} = 13.4 \times Hgb \times CO \times S_{a} O_{2}$$ (5)

方程式 5:简化的氧气输送

结合方程。 (3) 与等式。 (5):

$$\begin{收集} DO_{2} = 13.4 \times Hgb \times CO \times \left( {S_{v} O_{2} + \frac{{VO_{2} }}{13.4 \times Hgb \次 CO}} \right) \hfill \\ \quad \quad \; = 13.4 \times Hgb \times CO \times S_{v} O_{2} + VO_{2} \hfill \\ \end{聚集}$$ (6)

方程 6:\({DO}_{2}\)\({S}_{v}{O}_{2}\)的关系

最后,结合方程。 (6) 与等式。 (4):

$$DO_{2} = 13.4 \times Hgb \times CO \times \left( {1 - \frac{{VO_{2} }}{13.4 \times Hgb \times EF}} \right) + VO_{2} $$ (7)

方程 7: VV ECMO 上的\({DO}_{2}\)独立于\({S}_{a}{O}_{2}\)\({S}_{v}{O }_{2}\)

最终方程表示 VV ECMO 上的氧气输送仅取决于血红蛋白、心输出量、ECMO 有效血流量和身体的氧气消耗。那么,引入 β 受体阻滞剂治疗,无论其对\({S}_{a}{O}_{2}\) 的影响如何,如果 Hgb、EF 和\({ VO}_{2}\)保持不变。虽然可以想象β受体阻滞剂治疗可以通过减少心肌细胞耗氧量来减少\({VO}_{2}\) ,从而增加\({DO}_{2}\),但这种效果在正常生理范围内不太可能因为肌细胞耗氧量通常仅为全身耗氧量(6-8 毫升/100 克/分钟)的 10%。然而,在最大正性肌力和变时性时,肌细胞耗氧量可能成为一个重要因素,β-受体阻滞剂治疗可能可作为心动过速患者的抗高血压药物。然而,对于绝大多数情况,VV ECMO 期间并不需要 β 阻滞,因为它可以有效减少 DO 2

不适用。

VV ECMO:

静脉-静脉体外膜氧合

\(DO_{2}\) :

患者供氧

\(S_{a} O_{2}\) :

患者动脉血氧饱和度

\(EF\)

ECMO流量

\(S_{m} O_{2}\) :

氧合器后氧饱和度

\(VO_{2}\) :

患者耗氧量

\(血红蛋白\)

血红蛋白

\(P_{m} O_{2}\) :

充氧器后氧分压

  1. Staudacher DL,Wengenmayer T,Schmidt M。β受体阻滞剂治疗静脉体外膜氧合难治性低氧血症:一把双刃剑。危重护理。 2023;27(1):360。

    文章 PubMed PubMed Central Google Scholar

  2. Messai E,Bouguerra A,Harmelin G,Di Lascio G,Cianchi G,Bonacchi M。用于确定静脉体外氧合期间动脉氧饱和度的新公式。重症监护医学。 2013;39(2):327–34。

    文章 CAS PubMed 谷歌学术

下载参考资料

没有任何。

没有任何。

作者和单位

  1. 俄勒冈健康与科学大学肺科和重症监护医学科,美国俄勒冈州波特兰

    Aravind K. Bommiasamy 和 Bishoy Zakhary

  2. 俄勒冈健康与科学大学急诊医学系重症监护科,美国俄勒冈州波特兰

    冉冉

作者
  1. Aravind K. Bommiasamy查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  2. Bishoy Zakhary查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

  3. 冉冉查看作者出版物

    您也可以在PubMed Google Scholar中搜索该作者 

贡献

AKB、BZ 和 RR 在手稿制作的各个部分都做出了贡献。所有作者阅读并认可的终稿。

通讯作者

通讯作者:Aravind K. Bommiasamy。

道德批准并同意参与

不适用。

同意发表

不适用。

利益争夺

没有任何。

出版商备注

施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。

开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的出处中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域奉献豁免 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文中提供的数据,除非数据的信用额度中另有说明。

转载和许可

检查更新。通过 CrossMark 验证货币和真实性

引用这篇文章

Bommiasamy, AK、Zakhary, B. 和 Ran, R. VV ECMO 中的 Beta 封锁。重症监护 28 , 139 (2024)。 https://doi.org/10.1186/s13054-024-04923-1

下载引文

  • 已收到

  • 已接受

  • 发表

  • DOI https://doi.org/10.1186/s13054-024-04923-1

分享此文章

您与之分享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

更新日期:2024-04-25
down
wechat
bug