当前位置: X-MOL 学术J. Geophys. Res. Solid Earth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advanced 3D TH and THM Modeling to Shed Light on Thermal Convection in Fault Zones With Varying Thicknesses
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-04-20 , DOI: 10.1029/2023jb028205
H. Duwiquet 1 , A. Genter 2 , L. Guillou‐Frottier 3, 4 , F. V. Donzé 5 , P. Ledru 6 , F. Magri 7, 8 , T. Guillon 3 , R. N. Horne 9 , L. Arbaret 4 , C. Souque 1
Affiliation  

Fault zones exhibit 3D variable thickness, a feature that remains inadequately explored, particularly with regard to the impact on fluid flow. Upon analyzing an analytic solution, we examine 3D thermal-hydraulic (TH) dynamical models through a benchmark experiment, which incorporates a fault zone with thickness variations corresponding to realistic orders of magnitude. The findings emphasize an area of interest where vigorous convection drives fluid flow, resulting in a temperature increase to 150°C at a shallow depth of 2.7 km in the thickest sections of the fault zone. Moreover, by considering various tectonic regimes (compressional, extensional, and strike-slip) within 3D thermal-hydraulic-mechanical (THM) models and comparing them to the benchmark experiment, we observe variations in fluid pressure induced by poroelastic forces acting on fluid flow within the area of interest. These tectonic-induced pressure changes influence the thermal distribution of the region and the intensity of temperature anomalies. Outcomes of this study emphasize the impact of poroelasticity-driven forces on transfer processes and highlight the importance of addressing fault geometry as a crucial parameter in future investigations of fluid flow in fractured systems. Such research has relevant applications in geothermal energy, CO2 storage, and mineral deposits.

中文翻译:

先进的 3D TH 和 THM 建模揭示不同厚度断层带中的热对流

断层带表现出 3D 可变厚度,这一特征尚未得到充分探索,特别是在对流体流动的影响方面。在分析解析解后,我们通过基准实验检查 3D 热水力 (TH) 动力学模型,其中包含厚度变化与实际数量级相对应的断层带。研究结果强调了一个令人感兴趣的区域,在该区域,强烈的对流驱动流体流动,导致断层带最厚部分2.7公里浅处的温度升高至150°C。此外,通过考虑 3D 热水力机械 (THM) 模型中的各种构造状态(压缩、伸展和走滑)并将其与基准实验进行比较,我们观察到作用于流体流动的孔隙弹性力引起的流体压力的变化在感兴趣的区域内。这些构造引起的压力变化影响该地区的热分布和温度异常的强度。这项研究的结果强调了孔隙弹性驱动力对传递过程的影响,并强调了将断层几何形状作为未来裂缝系统中流体流动研究的关键参数的重要性。此类研究在地热能、CO 2储存和矿藏方面具有相关应用。
更新日期:2024-04-25
down
wechat
bug