当前位置: X-MOL 学术For. Ecosyst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atmospheric nitrogen deposition affects forest plant and soil system carbon:nitrogen:phosphorus stoichiometric flexibility: A meta-analysis
Forest Ecosystems ( IF 4.1 ) Pub Date : 2024-04-09 , DOI: 10.1016/j.fecs.2024.100192
Xiyan Jiang , Xiaojing Wang , Yaqi Qiao , Yi Cao , Yan Jiao , An Yang , Mengzhou Liu , Lei Ma , Mengya Song , Shenglei Fu

Nitrogen (N) deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake. However, the effect of N deposition on the flexibility of carbon (C), N, and phosphorus (P) in forest plant-soil-microbe systems remains unclear. We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant, soil and microbial biomass C, N and P nutrients and stoichiometry to N addition in different N intensity (0–50, 50–100, >100 ​kg⋅ha⋅year of N), duration (0–5, >5 year), method (understory, canopy), and matter (ammonium N, nitrate N, organic N, mixed N). N addition significantly increased plant N:P (leaf: 14.98%, root: 13.29%), plant C:P (leaf: 6.8%, root: 25.44%), soil N:P (13.94%), soil C:P (10.86%), microbial biomass N:P (23.58%), microbial biomass C:P (12.62%), but reduced plant C:N (leaf: 6.49%, root: 9.02%). Furthermore, plant C:N:P stoichiometry changed significantly under short-term N inputs, while soil and microorganisms changed drastically under high N addition. Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content, while understory N inputs altered more by influencing soil C and P content. Organic N significantly influenced plant and soil C:N and C:P, while ammonia N changed plant N:P. Plant C:P and soil C:N were strongly correlated with mean annual precipitation (MAT), and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth. Besides, N addition decoupled the correlations between soil microorganisms and the plant. N addition significantly increased the C:P and N:P in soil, plant, and microbial biomass, reducing plant C:N, and aggravated forest P limitations. Significantly, these impacts were contingent on climate types, soil layers, and N input forms. The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.

中文翻译:

大气氮沉降影响森林植物和土壤系统碳:氮:磷化学计量灵活性:荟萃分析

氮(N)沉降通过改变土壤养分有效性来影响植物吸收,从而影响森林化学计量的灵活性。然而,氮沉降对森林植物-土壤-微生物系统中碳(C)、氮和磷(P)灵活性的影响仍不清楚。我们基于 751 对观测结果进行了荟萃分析,以评估植物、土壤和微生物生物量 C、N 和 P 养分以及化学计量对不同氮强度(0–50、50–100、>100)下氮添加的响应​kg·ha·N 年)、持续时间(0–5,>5 年)、方法(林下、冠层)和物质(铵态氮、硝酸盐态氮、有机态氮、混合态氮)。氮添加显着增加了植物N:P(叶:14.98%,根:13.29%),植物C:P(叶:6.8%,根:25.44%),土壤N:P(13.94%),土壤C:P( 10.86%),微生物生物量N:P(23.58%),微生物生物量C:P(12.62%),但减少了植物C:N(叶:6.49%,根:9.02%)。此外,植物C:N:P化学计量在短期氮输入下发生显着变化,而土壤和微生物在高氮添加下发生巨大变化。冠层氮添加主要通过改变植物氮含量来影响植物 C:N:P 化学计量,而林下氮输入则通过影响土壤 C 和 P 含量而改变更多。有机氮显着影响植物和土壤的C:N和C:P,而氨氮则改变植物的N:P。植物 C:P 和土壤 C:N 与年平均降水量 (MAT) 密切相关,施氮条件下土壤和植物的 C:N:P 化学计量灵活性与土壤深度相关。此外,氮的添加消除了土壤微生物与植物之间的相关性。氮的添加显着增加了土壤、植物和微生物生物量中的C:P和N:P,降低了植物C:N,并加剧了森林P的限制。值得注意的是,这些影响取决于气候类型、土壤层和氮输入形式。这些发现增强了我们对森林生态系统中植物-土壤系统养分循环机制以及植物对氮沉降的策略响应的理解。
更新日期:2024-04-09
down
wechat
bug