当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compressible FSI of elastic spikes for drag reduction under hypersonic flow
International Journal of Mechanical Sciences ( IF 7.3 ) Pub Date : 2024-04-21 , DOI: 10.1016/j.ijmecsci.2024.109282
Wen-Fan Wang , Mei Mei , Zhi-Qiao Wang , Zhi-Fu Zhou , Wei-Tao Wu

In this study, a new fluid structure interaction (FSI) algorithm is developed for the aerodynamic-elasticity problem, aiming to address the coupling problem between compressible fluids and deformable solid structures. To verify the feasibility of the proposed model, a two-dimensional cantilever panel case under shock waves was conducted. Our numerical results present good consistency with the data from literatures. Furthermore, the validated FSI algorithm is applied on an elastic spike under compressible hypersonic flow. The complicated interaction between the fluid and solid structure under various spike geometry sizes and materials were revealed in respect of the spike deformation, pressure, temperature, and flow fields distribution. The main findings show that the spike deformation largely affects pressure and temperature on the blunt, the aerodynamic drag and lift force, indicating the necessity of FSI. For the spike diameters and lengths, it is found that larger spike diameters and shorter spikes benefits for deformation reduction, thereby minimizing fluctuations in aerodynamic drag force. For spike materials, spikes with larger elastic moduli and lower densities are preferred for the drag reduction. Thus, the proposed FSI model can accurately predict flow fields around and deformations for elastic spikes and offer guidance for drag reduction design in aerospace engineering.

中文翻译:

高超声速流下减阻弹性钉的可压缩 FSI

在这项研究中,针对空气动力弹性问题开发了一种新的流体结构相互作用(FSI)算法,旨在解决可压缩流体和可变形固体结构之间的耦合问题。为了验证该模型的可行性,进行了冲击波作用下的二维悬臂板案例。我们的数值结果与文献数据具有良好的一致性。此外,经过验证的 FSI 算法应用于可压缩高超声速流下的弹性尖峰。通过尖峰变形、压力、温度和流场分布揭示了不同尖峰几何尺寸和材料下流体和固体结构之间的复杂相互作用。主要研究结果表明,尖峰变形很大程度上影响钝器上的压力和温度、气动阻力和升力,表明FSI的必要性。对于鞋钉直径和长度,发现较大的鞋钉直径和较短的鞋钉有利于减少变形,从而最大限度地减少气动阻力的波动。对于鞋钉材料,优选具有较大弹性模量和较低密度的鞋钉以实现减阻。因此,所提出的FSI模型可以准确预测弹性尖刺周围的流场和变形,为航空航天工程中的减阻设计提供指导。
更新日期:2024-04-21
down
wechat
bug