当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2024-04-29 , DOI: 10.1038/s41565-024-01658-6
Yadong Xu , Zhilu Ye , Ganggang Zhao , Qihui Fei , Zehua Chen , Jiahong Li , Minye Yang , Yichong Ren , Benton Berigan , Yun Ling , Xiaoyan Qian , Lin Shi , Ilker Ozden , Jingwei Xie , Wei Gao , Pai-Yen Chen , Zheng Yan

Realizing the full potential of stretchable bioelectronics in wearables, biomedical implants and soft robotics necessitates conductive elastic composites that are intrinsically soft, highly conductive and strain resilient. However, existing composites usually compromise electrical durability and performance due to disrupted conductive paths under strain and rely heavily on a high content of conductive filler. Here we present an in situ phase-separation method that facilitates microscale silver nanowire assembly and creates self-organized percolation networks on pore surfaces. The resultant nanocomposites are highly conductive, strain insensitive and fatigue tolerant, while minimizing filler usage. Their resilience is rooted in multiscale porous polymer matrices that dissipate stress and rigid conductive fillers adapting to strain-induced geometry changes. Notably, the presence of porous microstructures reduces the percolation threshold (Vc = 0.00062) by 48-fold and suppresses electrical degradation even under strains exceeding 600%. Theoretical calculations yield results that are quantitatively consistent with experimental findings. By pairing these nanocomposites with near-field communication technologies, we have demonstrated stretchable wireless power and data transmission solutions that are ideal for both skin-interfaced and implanted bioelectronics. The systems enable battery-free wireless powering and sensing of a range of sweat biomarkers—with less than 10% performance variation even at 50% strain. Ultimately, our strategy offers expansive material options for diverse applications.



中文翻译:

用于无线生物电子学的具有超低渗滤阈值的相分离多孔纳米复合材料

要充分发挥可拉伸生物电子学在可穿戴设备、生物医学植入物和软机器人领域的潜力,就需要本质上柔软、高导电性和应变弹性的导电弹性复合材料。然而,现有的复合材料通常会因应变下导电路径的破坏而损害电气耐久性和性能,并且严重依赖高含量的导电填料。在这里,我们提出了一种原位相分离方法,可促进微米级银纳米线组装并在孔隙表面上创建自组织渗滤网络。所得纳米复合材料具有高导电性、应变不敏感和耐疲劳性,同时最大限度地减少填料的使用。它们的弹性植根于能够消散应力的多尺度多孔聚合物基体和适应应变引起的几何变化的刚性导电填料。值得注意的是,多孔微结构的存在将渗滤阈值 ( V c  = 0.00062) 降低了 48 倍,并且即使在超过 600% 的应变下也能抑制电退化。理论计算得出的结果在数量上与实验结果一致。通过将这些纳米复合材料与近场通信技术相结合,我们展示了可拉伸的无线电源和数据传输解决方案,这些解决方案非常适合皮肤界面和植入生物电子学。该系统可实现无电池无线供电和一系列汗液生物标记物的传感,即使在 50% 的应变下,性能变化也小于 10%。最终,我们的策略为不同的应用提供了广泛的材料选择。

更新日期:2024-04-29
down
wechat
bug