当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-assembled manganese acetate@tin dioxide colloidal quantum dots as an electron-transport layer for efficient and stable perovskite solar cells
Inorganic Chemistry Frontiers ( IF 7 ) Pub Date : 2024-04-29 , DOI: 10.1039/d4qi00166d
Yutao Li 1 , Chenyu Zhao 1 , Lexin Wang 1 , Lin Fan 1, 2 , Maobin Wei 1, 2 , Huilian Liu 1, 2 , Xiaoyan Liu 1, 2 , Jinghai Yang 1, 2 , Fengyou Wang 1, 2 , Lili Yang 1, 2
Affiliation  

An SnO2 electron-transport layer (ETL) is a critical and mainstream component utilized in perovskite solar cells (PSCs) on account of its exceptional photoelectric performances and low-temperature fabrication process. Nevertheless, a significant number of defects on the surface of SnO2 quantum dots (QDs) can lead to QD agglomeration in dispersion and poor film quality, ultimately compromising the power conversion efficiency (PCE) and stability of devices. In this study, we developed multifunctional manganese acetate (Mn(Ac)2)-stabilized SnO2 quantum dots (Mac-SnO2 QDs) and utilized them to prepare ETLs for PSCs. The C[double bond, length as m-dash]O groups of Mn(Ac)2 can terminate the Sn4+ dangling bonds on Mac-SnO2 QDs, thereby preventing QD agglomeration, facilitating the preparation of a uniform film with good electrical properties. In addition, Mn2+ can permeate upward into the perovskite film, passivating I at the grain boundary and reducing perovskite bulk defects. Moreover, the perovskite grown on Mac-SnO2 releases residual stress, which can improve device performance and stability. As a consequence, Mac-SnO2 PSCs achieved a high PCE of 23.36% with improved stability. This successful approach of utilizing an organic acid salt to modify SnO2 QDs provides a facile and efficient strategy for enhancing the efficiency and stability of PSCs.

中文翻译:

自组装醋酸锰@二氧化锡胶体量子点作为高效稳定钙钛矿太阳能电池的电子传输层

SnO 2电子传输层(ETL)因其优异的光电性能和低温制造工艺而成为钙钛矿太阳能电池(PSC)中关键的主流组件。然而,SnO 2量子点(QD)表面的大量缺陷会导致QD分散性团聚和薄膜质量差,最终损害器件的功率转换效率(PCE)和稳定性。在这项研究中,我们开发了多功能醋酸锰(Mn(Ac) 2)稳定的SnO 2量子点(Mac-SnO 2 QD)并利用它们来制备PSC的ETL。 Mn(Ac) 2的C [双键,长度为m-破折号]O基团可以终止Mac-SnO 2 QD上的Sn 4+悬空键,从而防止QD团聚,有利于制备具有良好电性能的均匀薄膜。此外,Mn 2+可以向上渗透到钙钛矿薄膜中,钝化晶界处的I -并减少钙钛矿体缺陷。此外,在Mac-SnO 2上生长的钙钛矿可以释放残余应力,从而提高器件性能和稳定性。因此,Mac-SnO 2 PSC 实现了 23.36% 的高 PCE,并提高了稳定性。这种利用有机酸盐修饰SnO 2 QDs的成功方法为提高PSCs的效率和稳定性提供了一种简便有效的策略。
更新日期:2024-04-29
down
wechat
bug