当前位置: X-MOL 学术Dalton Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances in organolead halide crystalline materials for photocatalytic H2 evolution and CO2 reduction applications
Dalton Transactions ( IF 4 ) Pub Date : 2024-04-30 , DOI: 10.1039/d3dt04144a
Xueling Song 1 , Xiaoman Li 1 , Yuxuan Song 1 , Jingyi Bi 1 , Lei Wang 1 , Jigao Wang 2 , Junjie Liu 3 , Yanyan Li 3 , Hui Wang 3
Affiliation  

The photocatalytic technique has been widely recognized as a feasible technological route for sustainable energy conversion of solar energy into chemical energy. Photocatalysts play a vital role in the whole catalytic process. In particular, organolead halide perovskites have become emerging photocatalysts, owing to their precisely tunable light absorption range, high carrier diffusion mobility, and longer carrier lifetime and diffusion length. Nevertheless, their intrinsic structural instability and high carrier recombination rate are the major bottlenecks for further development in photocatalytic applications. This Frontier is focused on the recent research about the instability mechanism of organolead halide perovskites. Then, we summarize the recently developed strategies to improve the structural stability and photocatalytic activity of organolead halide materials, with an emphasis on the construction of organolead halide crystalline catalysts with high intrinsic structural stability. Finally, an outlook and challenges of organometal halide photocatalysts are presented, demonstrating the irreplaceable role of this class of emergent materials in the field of photo-energy conversion.

中文翻译:

用于光催化析氢和二氧化碳还原应用的有机铅卤化物晶体材料的最新进展

光催化技术已被广泛认为是太阳能可持续能源转化为化学能的可行技术路线。光催化剂在整个催化过程中起着至关重要的作用。特别是,有机铅卤化物钙钛矿因其可精确调节的光吸收范围、高载流子扩散迁移率以及更长的载流子寿命和扩散长度而成为新兴的光催化剂。然而,它们固有的结构不稳定性和高载流子复合率是光催化应用进一步发展的主要瓶颈。本前沿主要关注有机铅卤化物钙钛矿不稳定机制的最新研究。然后,我们总结了最近开发的提高有机铅卤化物材料的结构稳定性和光催化活性的策略,重点是构建具有高内在结构稳定性的有机铅卤化物晶体催化剂。最后,对有机金属卤化物光催化剂的前景和挑战进行了展望,展示了此类新兴材料在光能转换领域中不可替代的作用。
更新日期:2024-04-30
down
wechat
bug