当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling of chemical kinetics in the presence of hydrodynamic cavitation for wastewater treatment applications
Chemical Engineering Science ( IF 4.7 ) Pub Date : 2024-04-24 , DOI: 10.1016/j.ces.2024.120167
Jahidul Haque Chaudhuri , Dhiman Chatterjee

The reaction rate of hydroxyl radicals with organic pollutants is about /mol-s, can degrade a wide range of pollutants. Intense bubble collapse during hydrodynamic cavitation can produce hydroxyl radicals, making it suitable for wastewater treatment. The current study introduces a numerical method of predicting the performance of a hydrodynamic cavitation reactor. Unlike most literature that considers cavitation volume as an indicator of effectiveness of hydrodynamic cavitation, the present approach considers local pressure variation, cavitation volume fluctuation, radical production and their inter-relations. The findings show that though an initial increase in the extent of cavitation, marked by a rise in cavity volume, leads to higher radical production, the radical generation declines below an optimal cavitation number. The downstream recovery pressure also influences radical production. This numerical methodology, providing complete picture of radical production and its locations, will be very helpful for designing a new and more efficient cavitation reactor.

中文翻译:


废水处理应用中存在水动力空化的化学动力学建模



羟基自由基与有机污染物的反应速率约为/mol-s,可降解多种污染物。水动力空化过程中强烈的气泡破裂可以产生羟基自由基,使其适合废水处理。当前的研究介绍了一种预测水力空化反应器性能的数值方法。与大多数将空化体积视为水动力空化有效性指标的文献不同,本方法考虑局部压力变化、空化体积波动、自由基产生及其相互关系。研究结果表明,虽然空化程度的最初增加(以空化体积的增加为标志)会导致更高的自由基产生,但自由基生成量会下降到最佳空化数以下。下游采收压力也影响激进生产。这种数值方法提供了自由基生产及其位置的完整图像,对于设计新型且更高效的空化反应器将非常有帮助。
更新日期:2024-04-24
down
wechat
bug