当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selective Facet Engineering of Ni12P5 Nanoparticle for Maximization of Electrocatalytic Oxidative Reaction of Biomass Chemicals
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2024-05-02 , DOI: 10.1021/acssuschemeng.4c00269
Souradip Ganguly 1, 2 , Jyotishman Kaishyop 3 , Tuhin Suvra Khan 4 , SK Tarik Aziz 5 , Arnab Dutta 5 , Chanchal Loha 1 , Sirshendu Ghosh 1
Affiliation  

Electrocatalytic hydrogen generation is a prime research topic for the large-scale production of hydrogen fuel. High energy demanding oxygen evolution process impedes the production of H2 at low potentials. Conversion of biomass to value-added chemicals or fuels is appraised as an upcycling process, which is advantageous for resource management. Coupling of hydrogen generation at the cathode with oxidative conversion of biomass to market-demanded chemicals at the anode is a sustainable approach to increase energy efficiency in hybrid electrolysis. For that purpose, Ni-based anode electrocatalysts are in the forefront for ease of formation of hypervalent NiIII species, at a mild anodic potential, which act as an oxidant to propagate the oxidation and dehydrogenation reactions. Herein, we synthesized Ni12P5 nanohexagon via kinetic stabilization of high index {425¯} facets and compared the electrocatalytic activity toward various biomass-derived platform chemicals oxidation with the thermodynamically stable Ni12P5 nanosphere. The Ni12P5 nanohexagon outperforms the current state-of-the-art catalysts regarding mass activity, product conversion, and Faradaic yield. Ease of formation of active species, faster charge transfer, and enhanced adsorption of substrates over {425¯} facets resulted in this superior activity. This shape-directing effects on Ni12P5 ensured potential advantage of 150 mV in hybrid electrolysis over water splitting reaction when ethanol was used as a substrate in a two-electrode electrolyzer cell.

中文翻译:

用于最大化生物质化学品电催化氧化反应的 Ni12P5 纳米颗粒的选择性面工程

电催化制氢是大规模生产氢燃料的首要研究课题。高能量需求的析氧过程阻碍了低电势下H 2的产生。将生物质转化为增值化学品或燃料被认为是一种升级循环过程,有利于资源管理。将阴极的氢气生成与阳极的生物质氧化转化为市场所需的化学品相结合,是提高混合电解能源效率的可持续方法。为此,镍基阳极电催化剂处于最前沿,可以在温和的阳极电位下轻松形成高价 Ni III物质,充当氧化剂来促进氧化和脱氢反应。在此,我们通过高折射率的动力学稳定合成了Ni 12 P 5纳米六边形{425}并比较了热力学稳定的 Ni 12 P 5纳米球对各种生物质衍生平台化学品氧化的电催化活性。 Ni 12 P 5纳米六边形在质量活性、产物转化率和法拉第产率方面优于当前最先进的催化剂。易于形成活性物质、更快的电荷转移以及增强的底物吸附{425}方面导致了这种卓越的活动。当乙醇用作双电极电解池中的底物时,这种对 Ni 12 P 5的形状导向效应确保了混合电解相对于水分解反应具有 150 mV 的潜在优势。
更新日期:2024-05-02
down
wechat
bug