当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metamaterial Induced Symmetry Engineering of Berry Curvature for Spin Light Detection
Accounts of Materials Research ( IF 14.6 ) Pub Date : 2024-05-01 , DOI: 10.1021/accountsmr.4c00101
Mingyu Zhang 1, 2 , Nannan Shi 1
Affiliation  

Figure 1. Schematic of light induced emerging phenomena in topological matter. (a) Spin carrier moves in a Möbius-strip-like topologically nontrivial energy band. The spin direction gradually evolves from spin up (red arrow) to spin down (blue arrow) when the carrier goes clockwise on the top surface of the topological band. (b) Berry curvature distribution and chiral/spin light selected valley population in topological insulators. (c) Berry curvature distribution and chiral light selected Weyl Fermions population in Weyl semimetals. The red and blue circular arrows represent optical selection rule allowed transitions of left circularly polarized light and right circularly polarized light, respectively. Figure 2. Schematic of spin light induced artificial BPVE in plasmonic metamaterials. (a) When left circularly polarized light interacts with the T shaped plasmonic nanoantenna array, the asymmetric light scattering induced graphene electron heating produces alternating hot (red shade) and cold (blue shade) microscopic regions, which contribute a unidirectional photothermoelectric voltage. (b) A reversed photothermoelectric voltage with right circularly polarized light excitation. Figure 3. Schematic of plasmonic nanoantenna tailored CPGE effect. (a, b) Asymmetric geometry of the nanoantenna triggers electric field hotspots and creates tilted k space profile in Weyl cones. Optical selection rule and Pauli blockade populate only one side of a single Weyl cone. Due to inverse photothermoelectric effects, the Fermi level tilts in opposite directions. Left circularly polarized light induces −k CPGE current, while right circularly polarized light induces +k CPGE current. Mingyu Zhang is currently an Assistant Professor in School of Integrated Circuits at Harbin Institute of Technology, Shenzhen. He received his Ph.D. degree at University of Waterloo, Canada (2014–2019) and Bachelor degree at Harbin Institute of Technology. His main scientific interests are spin–orbit coupling topological materials and multifunctional mid-infrared and terahertz detection devices. Nannan Shi obtained a Bachelor’s degree in Materials Science and Engineering from Harbin Institute of Technology, Shenzhen. She is now a graduate student in Prof. Mingyu Zhang’s group at Harbin Institute of Technology, Shenzhen. Her research interests are design and characterization of metamaterials integrated topological materials for polarized light detection. This work is supported by Shenzhen excellent scientific and technological innovation talent training program (grant no. RCBS20210609103859072), Shenzhen institutions of higher learning stability support plan (grant no. GXWD20231130102040001), and the National Natural Science Foundation of China (grant no. 62105081). This article references 17 other publications. This article has not yet been cited by other publications. Figure 1. Schematic of light induced emerging phenomena in topological matter. (a) Spin carrier moves in a Möbius-strip-like topologically nontrivial energy band. The spin direction gradually evolves from spin up (red arrow) to spin down (blue arrow) when the carrier goes clockwise on the top surface of the topological band. (b) Berry curvature distribution and chiral/spin light selected valley population in topological insulators. (c) Berry curvature distribution and chiral light selected Weyl Fermions population in Weyl semimetals. The red and blue circular arrows represent optical selection rule allowed transitions of left circularly polarized light and right circularly polarized light, respectively. Figure 2. Schematic of spin light induced artificial BPVE in plasmonic metamaterials. (a) When left circularly polarized light interacts with the T shaped plasmonic nanoantenna array, the asymmetric light scattering induced graphene electron heating produces alternating hot (red shade) and cold (blue shade) microscopic regions, which contribute a unidirectional photothermoelectric voltage. (b) A reversed photothermoelectric voltage with right circularly polarized light excitation. Figure 3. Schematic of plasmonic nanoantenna tailored CPGE effect. (a, b) Asymmetric geometry of the nanoantenna triggers electric field hotspots and creates tilted k space profile in Weyl cones. Optical selection rule and Pauli blockade populate only one side of a single Weyl cone. Due to inverse photothermoelectric effects, the Fermi level tilts in opposite directions. Left circularly polarized light induces −k CPGE current, while right circularly polarized light induces +k CPGE current. This article references 17 other publications.

中文翻译:

用于自旋光检测的超材料诱导贝里曲率对称工程

图 1. 拓扑物质中光诱导出现的现象的示意图。 (a) 自旋载流子在莫比乌斯带状拓扑非平凡能带中运动。当载流子在拓扑带顶面上顺时针旋转时,自旋方向逐渐从向上自旋(红色箭头)演变为向下自旋(蓝色箭头)。 (b) 拓扑绝缘体中的贝里曲率分布和手性/自旋光选择的谷群。 (c) 贝里曲率分布和手性光选择外尔半金属中的外尔费米子群。红色和蓝色圆形箭头分别表示允许左圆偏振光和右圆偏振光转变的光学选择规则。图 2. 等离子体超材料中自旋光诱导的人工 BPVE 示意图。 (a) 当左旋圆偏振光与 T 形等离子体纳米天线阵列相互作用时,不对称光散射引起的石墨烯电子加热产生交替的热(红色阴影)和冷(蓝色阴影)微观区域,从而产生单向光热电压。 (b) 右旋圆偏振光激发的反向光热电电压。图 3. 等离子体纳米天线定制 CPGE 效应示意图。 (a, b) 纳米天线的不对称几何形状会触发电场热点并在韦尔锥体中产生倾斜的k空间剖面。光学选择规则和泡利封锁仅填充单个外尔锥体的一侧。由于逆光热电效应,费米能级向相反方向倾斜。左圆偏振光感应 - k CPGE 电流,而右圆偏振光感应 + k CPGE 电流。张明宇现任哈尔滨工业大学(深圳)集成电路学院助理教授。他获得了博士学位。加拿大滑铁卢大学学士学位(2014-2019)和哈尔滨工业大学学士学位。他的主要科学兴趣是自旋轨道耦合拓扑材料和多功能中红外和太赫兹探测装置。施楠楠毕业于哈尔滨工业大学(深圳)材料科学与工程专业,获学士学位。现为哈尔滨工业大学(深圳)张明宇教授课题组的研究生。她的研究兴趣是用于偏振光检测的超材料集成拓扑材料的设计和表征。该工作得到深圳市优秀科技创新人才培养计划(批准号:RCBS20210609103859072)、深圳市高等学校稳定支持计划(批准号:GXWD20231130102040001)和国家自然科学基金(批准号:62105081)的支持。本文引用了其他 17 篇出版物。这篇文章尚未被其他出版物引用。图 1. 拓扑物质中光诱导出现的现象的示意图。 (a) 自旋载流子在莫比乌斯带状拓扑非平凡能带中运动。当载流子在拓扑带顶面上顺时针旋转时,自旋方向逐渐从向上自旋(红色箭头)演变为向下自旋(蓝色箭头)。 (b) 拓扑绝缘体中的贝里曲率分布和手性/自旋光选择的谷群。 (c) 贝里曲率分布和手性光选择外尔半金属中的外尔费米子群。红色和蓝色圆形箭头分别表示允许左圆偏振光和右圆偏振光转变的光学选择规则。图 2. 等离子体超材料中自旋光诱导的人工 BPVE 示意图。 (a) 当左旋圆偏振光与 T 形等离子体纳米天线阵列相互作用时,不对称光散射引起的石墨烯电子加热产生交替的热(红色阴影)和冷(蓝色阴影)微观区域,从而产生单向光热电压。 (b) 右旋圆偏振光激发的反向光热电电压。图 3. 等离子体纳米天线定制 CPGE 效应示意图。 (a, b) 纳米天线的不对称几何形状会触发电场热点并在韦尔锥体中产生倾斜的k空间剖面。光学选择规则和泡利封锁仅填充单个外尔锥体的一侧。由于逆光热电效应,费米能级向相反方向倾斜。左圆偏振光感应 - k CPGE 电流,而右圆偏振光感应 + k CPGE 电流。本文引用了其他 17 篇出版物。
更新日期:2024-05-02
down
wechat
bug