当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic effect of atomically dispersed Cu species and Ti-defects for boosting photocatalytic CO2 reduction over hierarchical TiO2
Nanoscale ( IF 6.7 ) Pub Date : 2024-05-03 , DOI: 10.1039/d4nr01229a
Peijiao Chen 1 , Zhijun Li 1 , Pengze Wang 1 , Yuxin Yao 1 , Tianwei Dou 1 , Yang Qu 1 , Liqiang Jing 1
Affiliation  

The photocatalytic water-mediated CO2 reduction reaction, which holds great promise for the conversion of CO2 into valuable chemicals, is often hindered by inefficient separation of photogenerated charges and a lack of suitable catalytic sites. Herein, we have developed a glycerol coordination assembly approach to precisely control the distribution of atomically dispersed Cu species by occupying Ti-defects and adjusting the ratio between Cu species and Ti-defects in a hierarchical TiO2. The optimal sample demonstrates a ∼4-fold improvement in CO2-to-CO conversion compared to normal TiO2 nanoparticles. The high activity could be attributed to the Ti defects, which enhance the photogenerated charge separation and simultaneously facilitate the adsorption of water molecules, thereby promoting the water oxidation reaction. Moreover, by means of in situ EPR and FTIR spectra, we have demonstrated that Cu species can effectively capture photogenerated electrons and facilitate the adsorption of CO2, so as to catalyze the reduction of CO2. This work provides a strategy for the construction of atomic-level synergistic catalytic sites and the utilization of in situ techniques to reveal the underlying mechanism.

中文翻译:

原子分散的 Cu 物种和 Ti 缺陷的协同效应促进分级 TiO2 光催化 CO2 还原

光催化水介导的CO 2还原反应对于将CO 2转化为有价值的化学品具有广阔的前景,但常常因光生电荷分离效率低和缺乏合适的催化位点而受到阻碍。在此,我们开发了一种甘油配位组装方法,通过占据Ti缺陷并调整分级TiO 2中Cu物种和Ti缺陷之间的比例来精确控制原子分散的Cu物种的分布。与普通 TiO 2纳米颗粒相比,最佳样品的 CO 2至 CO 转化率提高了约 4 倍。高活性可归因于Ti缺陷,它增强了光生电荷分离,同时促进了水分子的吸附,从而促进了水氧化反应。此外,通过原位EPR和FTIR光谱,我们证明Cu物种可以有效捕获光生电子并促进CO 2的吸附,从而催化CO 2的还原。这项工作为构建原子级协同催化位点和利用原位技术揭示潜在机制提供了策略。
更新日期:2024-05-03
down
wechat
bug