当前位置: X-MOL 学术Plant Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perspectives on improving photosynthesis to increase crop yield
The Plant Cell ( IF 11.6 ) Pub Date : 2024-05-03 , DOI: 10.1093/plcell/koae132
Roberta Croce 1 , Elizabete Carmo-Silva 2 , Young B Cho 3 , Maria Ermakova 4 , Jeremy Harbinson 5 , Tracy Lawson 6 , Alistair J McCormick 7, 8 , Krishna K Niyogi 9, 10, 11, 12 , Donald R Ort 3 , Dhruv Patel-Tupper 9, 10 , Paolo Pesaresi 13 , Christine Raines 6 , Andreas P M Weber 14 , Xin-Guang Zhu 15
Affiliation  

Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase CO2 concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.

中文翻译:

改善光合作用以提高作物产量的观点

改善光合作用是植物将光能转化为化学能的基本过程,是一个关键的研究领域,在提高可持续农业生产力和应对全球粮食安全挑战方面具有巨大潜力。这个观点深入研究了旨在优化光合作用效率的最新进展和方法。我们的讨论涵盖了整个过程,从光捕获及其调节开始,一直到电子转移的瓶颈。然后,我们深入研究光合作用的碳反应,重点关注针对卡尔文-本森-巴沙姆 (CBB) 循环酶的策略。此外,我们从各种光合生物中汲取灵感,探索增加 Rubisco(负责 CBB 循环第一步的酶)附近 CO2 浓度的方法,并通过研究增强 CO2 输送到叶子的方法来结束本节。除了单个过程之外,我们还讨论了两种确定光合作用改善关键目标的方法:系统建模和自然变异研究。最后,我们重新审视上述一些策略,以提供改进的整体视图,分析它们对氮利用效率和冠层光合作用的影响。
更新日期:2024-05-03
down
wechat
bug