当前位置: X-MOL 学术Environ. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Room-temperature and carbon-negative production of biodiesel via synergy of geminal-atom and photothermal catalysis
Environmental Chemistry Letters ( IF 15.7 ) Pub Date : 2024-03-19 , DOI: 10.1007/s10311-024-01723-5
Jinshu Huang , Tengyu Liu , Keping Wang , Zhuochun Huang , Junqi Wang , Samuel Lalthazuala Rokhum , Hu Li

Catalytic biodiesel production with bases can be achieved under relatively mild conditions. However, the basicity of solid alkali catalysts originates usually from electron-rich atoms such as oxygen and nitrogen, rather than electron-deficient metal species. This typically induces aggregation and leaching of active sites, and difficulty in recycling. Here we synthesized a photothermal catalyst made of stable and uniformly dispersed graphene-like biomaterial anchored neighboring potassium single atoms. The production of biodiesel from various acidic oils over this catalyst was evaluated by life cycle assessment and cost analysis. Infrared thermal imaging and finite element simulations were used to study the light-induced self-heating process. We further studied the alkaline behavior of neighboring potassium single atoms by carbon dioxide chemisorption and quantum calculations. Results show biodiesel yield of 99.6% at room temperature, which is explained by a good local photothermal effect at the solar interface and the presence of superalkali sites in the atomic potassium-containing biomaterial. The global warming potential measured for this system resulted in a net negative CO2 emission of −10.8 kg CO2eq/kg. The photothermal catalyst can be recycled with almost no decline in reactivity.



中文翻译:

通过孪生原子和光热催化的协同作用在室温和负碳条件下生产生物柴油

用碱催化生产生物柴油可以在相对温和的条件下实现。然而,固体碱催化剂的碱性通常源自富电子原子,例如氧和氮,而不是缺电子金属物种。这通常会导致活性位点的聚集和浸出,以及回收困难。在这里,我们合成了一种由稳定且均匀分散的类石墨烯生物材料制成的光热催化剂,该生物材料锚定相邻的钾单原子。通过生命周期评估和成本分析对使用该催化剂从各种酸性油生产生物柴油进行了评估。采用红外热成像和有限元模拟来研究光致自加热过程。我们通过二氧化碳化学吸附和量子计算进一步研究了相邻钾单原子的碱性行为。结果显示,室温下生物柴油产率为 99.6%,这是由于太阳界面处良好的局部光热效应以及含原子钾生物材料中存在超碱位点所致。该系统测得的全球变暖潜势导致CO 2净负排放量为-10.8 kg CO 2 eq/kg。光热催化剂可以回收利用,反应活性几乎不下降。

更新日期:2024-03-19
down
wechat
bug