当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantifying the mutual effects of water trading and systematic water saving in a water-scarce watershed of China
Water Research ( IF 12.8 ) Pub Date : 2024-05-01 , DOI: 10.1016/j.watres.2024.121712
Mingshuai Chen , Junlong Zhang , Taishan Wang , Kexin Wu , Li You , Jing Sun , Yue Li , Yongping Li , Guohe Huang

In this study, a conjunctive water management model based on interval stochastic bi-level programming method (CM-ISBP) is proposed for planning water trading program as well as quantifying mutual effects of water trading and systematic water saving. CM-ISBP incorporates water resources assessment with soil and water assessment tool (SWAT), systematic water-saving simulation combined with water trading, and interval stochastic bi-level programming (ISBP) within a general framework. Systematic water saving involves irrigation water-saving technologies (sprinkler irrigation, micro-irrigation, low-pressure pipe irrigation), enterprise water-saving potential and water-saving subsidy. The CM-ISBP is applied to a real case of a water-scarce watershed (i.e. Dagu River watershed, China). Mutual effects of water trading and water-saving activities are simulated with model establishment and quantified through mechanism analysis. The fate of saved water under the systematic water saving is also revealed. The coexistence of the two systems would increase system benefits by [11.89, 12.19]%, and increase the water use efficiency by [40.04, 40.46]%. Thus mechanism that couples water trading and water saving is optimal and recommended according to system performance.
更新日期:2024-05-01
down
wechat
bug