当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical short-range disorder in lithium oxide cathodes
Nature ( IF 64.8 ) Pub Date : 2024-05-08 , DOI: 10.1038/s41586-024-07362-8
Qidi Wang , Zhenpeng Yao , Jianlin Wang , Hao Guo , Chao Li , Dong Zhou , Xuedong Bai , Hong Li , Baohua Li , Marnix Wagemaker , Chenglong Zhao

Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1,2,3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid capacity deterioration and thus short battery life2,4. Here we report an approach that addresses these issues using the integration of chemical short-range disorder (CSRD) into oxide cathodes, which involves the localized distribution of elements in a crystalline lattice over spatial dimensions, spanning a few nearest-neighbour spacings. This is guided by fundamental principles of structural chemistry and achieved through an improved ceramic synthesis process. To demonstrate its viability, we showcase how the introduction of CSRD substantially affects the crystal structure of layered Li cobalt oxide cathodes. This is manifested in the transition metal environment and its interactions with oxygen, effectively preventing detrimental sliding of crystal slabs and structural deterioration during Li removal. Meanwhile, it affects the electronic structure, leading to improved electronic conductivity. These attributes are highly beneficial for Li-ion storage capabilities, markedly improving cycle life and rate capability. Moreover, we find that CSRD can be introduced in additional layered oxide materials through improved chemical co-doping, further illustrating its potential to enhance structural and electrochemical stability. These findings open up new avenues for the design of oxide cathodes, offering insights into the effects of CSRD on the crystal and electronic structure of advanced functional materials.



中文翻译:

氧化锂正极的化学短程无序

有序层状结构是锂 (Li) 离子阴极1,2,3的重要组成部分。然而,在充电时,本质上脆弱的缺锂框架变得容易受到晶格应变和结构和/或化学机械退化的影响,导致容量快速恶化,从而缩短电池寿命2,4。在这里,我们报告了一种通过将化学短程无序(CSRD)集成到氧化物阴极中来解决这些问题的方法,该方法涉及晶格中元素在空间维度上的局部分布,跨越几个最近邻间距。这是以结构化学基本原理为指导,并通过改进的陶瓷合成工艺实现的。为了证明其可行性,我们展示了 CSRD 的引入如何显着影响层状锂钴氧化物阴极的晶体结构。这体现在过渡金属环境及其与氧的相互作用中,有效防止了除锂过程中晶体板的有害滑动和结构恶化。同时,它影响电子结构,从而提高电子电导率。这些属性对于锂离子存储能力非常有益,可显着提高循环寿命和倍率能力。此外,我们发现CSRD可以通过改进的化学共掺杂引入到额外的层状氧化物材料中,进一步说明了其增强结构和电化学稳定性的潜力。这些发现为氧化物阴极的设计开辟了新的途径,为了解 CSRD 对先进功能材料的晶体和电子结构的影响提供了见解。

更新日期:2024-05-09
down
wechat
bug