当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel NaNbO3-based relaxors featuring ultrahigh energy storage performance
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2024-05-01 , DOI: 10.1016/j.jallcom.2024.174710
Kun Wei , Jianhong Duan , Gaosheng Li , Huifen Yu , He Qi , Hao Li

Ferroelectric ceramics with ultrahigh power density and fast charging/discharging are attracting increasing attention. The practical application of most antiferroelectric ceramics in current electronics is significantly limited by their poor recoverable energy storage density. Here, a novel system ceramic of (1-) NaCaNbTiO-BiZnNbO (NCNT-BZN) solid solutions, possessing a giant ∼7.05 J cm and excellent conversion efficiency ()∼83.7% under 53 kV mm, was synthesized to exhibit superior stability with changing temperature, frequency and fatigue behavior, together with the large current density (=571.8 A cm), ultrahigh power density (=85.7 MW cm) and ultrafast discharge rate (∼200 ns). These outstanding properties are attributed to the phase transformation from the AFE R to the FE Q phase, accompanied by the smashing of sub-microdomains into polar nanoregions, as the BZN content raises. The experimental results disclose that the synergistic effect of the highly dynamic response of polar nanoregions and the local lattice distortion arising from the disruption of long-range polar ordering by heterovalent ion filling generates a delayed saturation polarization with a strong relaxor behavior, thereby optimizing the energy storage density. The unique combination, together with a simple synthesis strategy, offers a refreshing strategy for the development of dielectric materials.

中文翻译:


具有超高储能性能的新型 NaNbO3 弛豫剂



具有超高功率密度和快速充放电功能的铁电陶瓷越来越受到人们的关注。大多数反铁电陶瓷在当前电子学中的实际应用因其可恢复能量存储密度差而受到严重限制。这里,合成了一种新型的(1-)NaCaNbTiO-BiZnNbO(NCNT-BZN)固溶体体系陶瓷,具有巨大的~7.05Jcm和在53kVmm下优异的转换效率()~83.7%,具有优异的稳定性不断变化的温度、频率和疲劳行为,以及大电流密度(=571.8Acm)、超高功率密度(=85.7MWcm)和超快放电速率(∼200ns)。这些突出的性能归因于随着 BZN 含量的增加,从 AFE R 相到 FE Q 相的相变,伴随着亚微米域粉碎成极性纳米区域。实验结果表明,极性纳米区域的高动态响应和异价离子填充破坏长程极性有序性所产生的局部晶格畸变的协同效应产生了具有强弛豫行为的延迟饱和极化,从而优化了能量存储密度。这种独特的组合加上简单的合成策略,为介电材料的开发提供了令人耳目一新的策略。
更新日期:2024-05-01
down
wechat
bug