当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gestational and Postpartum Exposure to PM2.5 Components and Glucose Metabolism in Chinese Women: A Prospective Cohort Study
Environmental Science & Technology ( IF 11.4 ) Pub Date : 2024-05-10 , DOI: 10.1021/acs.est.4c03087
Yujing Chen 1, 2 , Yuxuan Wang 3 , Qian Chen 4 , Ming Kei Chung 2, 5, 6 , Yu Liu 1 , Minyan Lan 1 , Yanhong Wei 7 , Lizi Lin 8 , Li Cai 1
Affiliation  

Pregnant women are physiologically prone to glucose intolerance, while the puerperium represents a critical phase for recovery. However, how air pollution disrupts glucose homeostasis during the gestational and early postpartum periods remains unclear. This prospective cohort study conducted an oral glucose tolerance test and measured the insulin levels of 834 pregnant women in Guangzhou, with a follow-up for 443 puerperae at 6–8 weeks postpartum. Residential PM2.5 and five chemical components were estimated by an established spatiotemporal model. The adjusted linear model showed that an IQR increase in gestational PM2.5 exposure was associated with an increase of 0.17 mmol/L (95% CI: 0.06, 0.28) in fasting plasma glucose (FPG) and 0.24 (95% CI: 0.05, 0.42) in the insulin resistance index. Postpartum PM2.5 exposure was linked to a 0.17 mmol/L (95% CI: 0.05, 0.28) elevation in FPG per IQR, with a strengthened association found in women with gestational diabetes (Pinteraction = 0.003). In the quantile-based g-computation model, NO3 consistently contributed to the combined effect of PM2.5 components on gestational and postpartum FPG. This study was the first to suggest that PM2.5 components were associated with exacerbated gestational insulin resistance and elevated postpartum FPG. Targeted interventions reducing the emissions of toxic PM2.5 components are essential to improving maternal glucose metabolism.
更新日期:2024-05-10
down
wechat
bug