当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Over-Reduced Core–Shell Au@CoOx-Co with Strong Interfacial Interactions for Photoassisted Peroxymonosulfate Activation
The Journal of Physical Chemistry C ( IF 3.7 ) Pub Date : 2024-05-09 , DOI: 10.1021/acs.jpcc.4c01155
Wenhao Xu 1 , Yujie Cao 1 , Binhang Wang 1 , Zitao Zhang 1 , Xiang Li 1 , Libo Sun 1 , Guangnan Liu 1 , Yun Tang 1
Affiliation  

Metal–metal oxide nanostructures have drawn increasing research attention due to their unique properties enabled by strong interfacial interactions. However, the synthesis of metal–metal oxide nanocomposites with well-controlled architectures such as the core@shell structure remains challenging. Additionally, introducing plasmonic metal can endow the nanomaterials with photoresponsive functions, offering opportunities for optical modulation of catalytic properties. In this work, we designed and fabricated an over-reduced Au@CoOx-Co core–shell nanostructure using an improved seed growth process involving carbonyl precursors. The Au core serves as an in situ catalyst facilitating the over-reduced CoOx-Co shells, and the strong interfacial interaction introduces abundant oxygen vacancies (OVs) to provide reactive sites. Meanwhile, the Au core generates excitons under light irradiation, which can significantly enhance the activation of peroxymonosulfate (PMS) for degrading fluorine-containing pollutants. This design synergistically integrates structural design, photoelectronic regulation, and catalytic enhancement, demonstrating a promising application in the future.

中文翻译:


具有强界面相互作用的过还原核壳Au@CoOx-Co用于光辅助过一硫酸盐活化



金属-金属氧化物纳米结构由于其强界面相互作用所带来的独特性能而引起了越来越多的研究关注。然而,具有良好控制结构(例如核@壳结构)的金属-金属氧化物纳米复合材料的合成仍然具有挑战性。此外,引入等离子体金属可以赋予纳米材料光响应功能,为催化性能的光调制提供机会。在这项工作中,我们使用改进的涉及羰基前体的种子生长工艺设计并制造了过度还原的 Au@CoO x -Co 核壳纳米结构。 Au核作为原位催化剂促进过度还原的CoO x -Co壳,并且强的界面相互作用引入了丰富的氧空位(OV)以提供反应位点。同时,Au核在光照射下产生激子,可以显着增强过一硫酸盐(PMS)降解含氟污染物的活化作用。该设计协同集成了结构设计、光电调控和催化增强,在未来具有广阔的应用前景。
更新日期:2024-05-09
down
wechat
bug