当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent Advanced Ultra‐Wide Bandgap β‐Ga2O3 Material and Device Technologies
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2024-05-11 , DOI: 10.1002/aelm.202300844
Sihan Sun 1 , Chenlu Wang 1 , Sami Alghamdi 2 , Hong Zhou 1, 3 , Yue Hao 1, 3 , Jincheng Zhang 1, 3
Affiliation  

Gallium oxide (Ga2O3) is an emerging ultra‐wide bandgap (UWBG) semiconductor material that has gained significant attention in the field of high voltage and high frequency power electronics. Its noteworthy attributes include a large bandgap (Eg) of 4.8 eV, high theoretical critical breakdown field strength (EC) of 8 MV cm−1, and saturation velocity (νs) of 2 × 107 cm s−1, as well as high Baliga figures of merit (BFOM) of 3000. In addition, Ga2O3 has the advantages of large‐size substrates that can be achieved by low‐cost melt‐grown techniques. This review provides a partial overview of pivotal milestones and recent advancements in the Ga2O3 material growth and device performance. It begins with a discussion of the fundamental material properties of Ga2O3, followed by a description of substrate growth and epitaxial techniques for Ga2O3. Subsequently, the contact technologies between Ga2O3 and other materials are fully elucidated. Moreover, this article also culminates with a detailed analysis of Ga2O3‐based high voltage and high frequency power devices. Some challenges and solutions, such as the lack of p‐type doping, low thermal conductivity, and low mobility are also presented and investigated in this review.

中文翻译:

最新先进的超宽带隙β-Ga2O3材料和器件技术

氧化镓(Ga23)是一种新兴的超宽带隙(UWBG)半导体材料,在高压和高频电力电子领域受到了极大的关注。其值得注意的属性包括大带隙(EG)为4.8 eV,高理论临界击穿场强(EC) 8 MV 厘米−1,和饱和速度(νs) 为 2 × 107厘米−1,以及高达 3000 的 Baliga 品质因数 (BFOM)。此外,Ga23具有可以通过低成本熔融生长技术实现的大尺寸基板的优点。这篇评论部分概述了 Ga 的关键里程碑和最新进展23材料生长和器件性能。首先讨论 Ga 的基本材料特性23,随后描述了 Ga 的衬底生长和外延技术23。随后,Ga之间的接触技术23和其他材料都得到充分阐明。此外,本文还对 Ga 进行了详细分析23基于高压和高频功率器件。本综述还提出并研究了一些挑战和解决方案,例如缺乏 p 型掺杂、低导热率和低迁移率。
更新日期:2024-05-11
down
wechat
bug