当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Auto‐Pressurized Multi‐Stage Tesla‐Valve Type Microreactors in Carbon Monoliths Obtained Through 3D Printing: Impact of Design on Fluid Dynamics and Catalytic Activity
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2024-05-11 , DOI: 10.1002/adfm.202403659
Adriana Parra‐Marfil 1, 2 , Carlos Gilberto Aguilar‐Madera 3 , Agustín Francisco Pérez‐Cadenas 1 , Francisco Carrasco‐Marín 1 , Saúl Omar Gutiérrez‐Reina 2 , Agustín Bueno‐López 4 , Raúl Ocampo‐Pérez 2 , Esther Bailón‐García 1
Affiliation  

The present research exploits an innovative methodology for producing auto‐pressurized carbon microreactors with a precise and controlled structure analyzing the influence of their design on the fluid dynamics and their catalytic performance. Carbon monoliths with Tesla‐valve shape channels (Tesla, T, and modified Tesla, Tm) are synthesized through the combination of 3D printing and sol–gel process and further probed as Ni/CeO2 supports on CO2 methanation. The experimental results and mathematical modeling corroborated the improved performance obtained through the complex design compared to a conventional one. In addition to chaotic fluid flow induced by the deviation in flow direction, which improves the reagents‐active phase interaction, local pressure increases due to convergence of flows may enhance the Sabatier reaction according to Le Châtelier's principle. Conversely to straight channels, T and Tm are not affected by flow rate and presented chemical control. Tesla‐valve with curved angle (Tm) improved the mass transfer, achieving higher conversion and ≈30% reaction rate increase regarding right angle (T). Thus, this auto‐pressurized multi‐stage Tesla‐valve monolith opens the gate to design specific and advanced functional materials for multitude chemical reactions where not only the reactant‐active phase contact can be maximized but also the reaction conditions can be controlled to maximize the reaction kinetics.

中文翻译:

通过 3D 打印获得的碳整体自动加压多级特斯拉阀型微反应器:设计对流体动力学和催化活性的影响

本研究采用创新方法来生产具有精确受控结构的自动加压碳微反应器,分析其设计对流体动力学及其催化性能的影响。通过 3D 打印和溶胶-凝胶工艺相结合,合成了具有特斯拉阀门形状通道(Tesla,T 和改性特斯拉,Tm)的碳整体,并进一步探讨了 Ni/CeO2 对 CO2 甲烷化的支持。实验结果和数学模型证实了与传统设计相比,通过复杂设计获得的性能改进。除了由流动方向的偏差引起的混沌流体流动(这改善了试剂-活性相相互作用)之外,根据勒夏特列原理,由于流动收敛而导致的局部压力增加可能会增强萨巴蒂尔反应。与直通道相反,T和Tm不受流速影响并具有化学控制。具有弯角 (Tm) 的特斯拉阀改善了传质,实现了更高的转化率,并且直角 (T) 的反应速率增加了约 30%。因此,这种自动加压的多级特斯拉阀整体打开了设计用于多种化学反应的特定和先进功能材料的大门,其中不仅可以最大化反应物-活性相接触,而且可以控制反应条件以最大化反应动力学。
更新日期:2024-05-11
down
wechat
bug